
Ajile Suite
Software Users Guide

Ajile Light Industries ©2025

Contents

1 Introduction 1
1.1 Overview of Features . 1
1.2 Software Installation . 2

1.2.1 Obtaining Ajile Software . 2
1.2.2 Software Installation in Windows . 2
1.2.3 Software Installation in Ubuntu . 4

1.3 Device Driver Installation and Configuration . 6
1.3.1 USB 3.0 Drivers . 6
1.3.2 PCIe Drivers and Configuration . 6
1.3.3 Ethernet Configuration . 6

1.4 Running the Examples . 6
1.4.1 Running the Examples in the GUI . 7
1.4.2 Running the Examples with the SDK . 9

1.5 Upgrading Ajile Software and Firmware . 10
1.5.1 Upgrading Ajile Firmware . 10
1.5.2 Upgrading Ajile Software . 11

2 Project Model Overview 13
2.1 Projects . 13
2.2 Components . 13
2.3 Images . 15
2.4 Sequences, Sequence Items, Frames . 15
2.5 Lighting . 16
2.6 Triggers . 16

3 Projects 19
3.1 Project Members . 19
3.2 Creating New Projects . 19

3.2.1 Creating New Projects in the GUI . 19
3.2.2 Creating New Projects in the SDK . 21

3.3 Saving and Opening Projects . 21
3.3.1 Saving and Opening Projects in the GUI . 22
3.3.2 Saving and Opening Projects in the SDK . 23

4 Components 24
4.1 Component Members . 24
4.2 Initializing Components . 24

4.2.1 Reading Components Kits from File . 24
4.2.2 Retrieving Components from the Hardware . 26
4.2.3 Creating Custom Components . 28

4.3 Configuring Components . 28
4.3.1 Configuring Components in the GUI . 28
4.3.2 Configuring Components in the SDK . 29

I

5 Images 30
5.1 Image Members . 30
5.2 Image Data Format . 30
5.3 Creating DMD Images . 32

5.3.1 Creating DMD Images in the GUI . 33
5.3.2 Creating DMD Images in the SDK . 34

6 Sequences 38
6.1 Sequence, Sequence Item and Frame Members . 38

6.1.1 Sequence Members . 38
6.1.2 Sequence Item Members . 38
6.1.3 Frame Members . 38

6.2 Sequence Structure . 41
6.3 Creating Sequences . 42

6.3.1 Creating Sequences in the GUI . 43
6.3.2 Creating Sequences in the SDK . 43

6.4 Adding Sequence Items and Frames . 44
6.4.1 Adding Sequence Items and Frames in the GUI . 44
6.4.2 Adding Sequence Items and Frames in the SDK . 45

6.5 Modifying Sequence Item and Frame Parameters . 46
6.5.1 Modifying Sequence Item and Frame Parameters in the GUI 46
6.5.2 Modifying Sequence Item and Frame Parameters in the SDK 48

6.6 Verifying Sequences . 48
6.6.1 Verifying Sequences in the GUI . 48
6.6.2 Verifying Sequences in the SDK . 48

7 Lighting 51
7.1 Lighting Introduction . 51

7.1.1 Lighting Controller Overview . 51
7.1.2 Lighting Control Software Overview . 51

7.2 Lighting Members . 52
7.2.1 LED Property Members . 52
7.2.2 LED Setting Members . 52

7.3 LED Settings Detailed Description . 53
7.4 Configuring Component LED Properties . 55

7.4.1 Configuring LED Properties in the GUI . 55
7.4.2 Configuring LED Properties in the SDK . 55

7.5 Configuring LED Settings per Frame . 57
7.5.1 Configuring LED Settings in the GUI . 57
7.5.2 Configuring LED Settings in the SDK . 57

8 Triggers 59
8.1 Device State Outputs . 60
8.2 Device Control Inputs . 60
8.3 Trigger Members . 60

8.3.1 External Trigger Setting Members . 60
8.3.2 Trigger Rule Members . 60
8.3.3 Frame Trigger Setting Members . 60

8.4 Trigger Timing . 60
8.5 Trigger Rule Structure . 63
8.6 Configuring Trigger Settings . 66

8.6.1 Configuring Trigger Settings in the GUI . 66
8.6.2 Configuring Trigger Settings in the SDK . 67

8.7 Creating Trigger Rules . 69
8.7.1 Creating Trigger Rules in the GUI . 69
8.7.2 Creating Trigger Rules in the SDK . 70

8.8 Per Frame Trigger Settings . 72
8.8.1 Per Frame Trigger Settings in the GUI . 73
8.8.2 Per Frame Trigger Settings in the SDK . 73

9 System Control 75
9.1 Connecting to the Device . 75

9.1.1 Connecting to the Device in the GUI . 75
9.1.2 Connecting to the Device in the SDK . 76

9.2 Loading Projects . 77
9.2.1 Loading Projects in the GUI . 77
9.2.2 Loading Projects in the SDK . 77

9.3 Running Sequences . 79
9.3.1 Running Sequences in the GUI . 79
9.3.2 Running Sequences in the SDK . 79

9.4 Device Status Information . 80
9.4.1 Device State . 80
9.4.2 Sequence Status . 81

9.5 Streaming Sequences . 82
9.5.1 Running Streaming Sequences in the SDK . 83

10 Color and Grayscale Display 86
10.1 Displaying Color/Grayscale as a List of Bitplanes . 87

10.1.1 Splitting Multi-Bit Images into Bitplanes . 87
10.1.2 Displaying Bitplanes of n-Bit Images . 87
10.1.3 Grayscale Display: Frame Time Control Only . 87
10.1.4 Grayscale Display: Frame Time and LED Power Control 88
10.1.5 Grayscale Display Optimization . 89
10.1.6 Color Display . 90

10.2 Displaying Color and Grayscale Images . 91
10.2.1 Displaying Color and Grayscale Images in the GUI 91
10.2.2 Displaying Color and Grayscale Images in the SDK 93

10.3 Creating High Bit-Depth (>8-bit) Color and Grayscale Sequence Items 97
10.4 Optimizing the Output Linearity of Color and Grayscale Images 97
10.5 Optimizing Color and Grayscale for Human Display . 99

11 Camera Control 100
11.1 Allocating Images . 100

11.1.1 Allocating Images in the GUI . 101
11.2 Creating Sequences . 102

11.2.1 Creating Sequences in the GUI . 102
11.3 Running Camera Capture Sequences . 103

11.3.1 Running Camera Capture Sequences in the GUI 103
11.4 Retrieving Images . 104

11.4.1 Retrieving Images in the GUI . 104
11.5 Image Storage in the GUI . 106
11.6 Acquiring Images . 106

11.6.1 Acquiring Images in the GUI . 108
11.7 DMD and Camera Synchronization . 108

11.7.1 DMD and Camera in the GUI . 109
11.8 Example Projects . 109

Chapter 1

Introduction

Ajile has developed a suite of hardware and software products that cooperatively support fast image
creation and projection by Ajile DMD structured light projectors as well as coordinated fast image
capture by Ajile smart cameras. These products have broad applicability in areas such as machine
vision, automated inspection, vision testing and spectroscopy.

The Ajile suite is designed to make management of light a simpler process. Users can begin with an
easy to use graphical user interface (GUI) to quickly and easily create projects which create, project
and capture images. The GUI workflow will not only give one familiarity with the project structure
and the way in which components interact, but will also enable users to create and run fully functional
experiments to accomplish meaningful tasks.

For greater levels of control, flexibility and power, one can make use of the Ajile software develop-
ment kit (SDK) which exposes in a programmatic form the same object-oriented project structure and
overall workflow which are available in the GUI, available in either Python or C++ programming lan-
guages.

The tight integration of both hardware and software within a single coherent suite makes many tasks
straightforward which were previously either extremely difficult or even impossible with other existing
solutions.

1.1 Overview of Features

The following list provides an overview of some of the more interesting, unique, or otherwise nice to
have features which are found in the Ajile software suite. These features along with many others will be
described in detail throughout the documentation.

• Object-oriented project model describes images, sequences, frames and their relationships with one
another.

• Projects created by the GUI and/or SDK, then loaded and run directly by the controller hardware.

• Control of nearly every imaging parameter (e.g. frame time, lighting settings, region of interest,
etc.) on a frame by frame (per frame) basis.

• Tight synchronization of components and external devices by graphically specifying trigger rules
in software which are then evaluated in hardware with nanoseconds of latency.

• Images preloaded, stored and run from controller memory, or streamed continuously from a PC
over a number of available interfaces.

• Symmetric view of both projectors (which consume/display images) and cameras (which produce/-
capture images). Both types of components follow the same overall project model.

1

Chapter 1. Introduction

• Projects easily ported between GUI and SDK applications.

• SDK applications can be run on a host PC, or run directly on the embedded Linux controller with
minimal code changes.

• Embedded image processing algorithms which run in FPGA hardware but configured in software
allow smart image pipelines for processing or generating images at high speeds.

1.2 Software Installation

Currently supported operating systems for the Ajile GUI and SDK include Windows 7 / 8.1 / 10 and
Ubuntu Linux 16.04. Other distributions of both Windows and Linux may be possible but are not
officially supported and so their operation cannot be guaranteed.

1.2.1 Obtaining Ajile Software

To obtain the Ajile software suite packages, go to the Ajile downloads section of the Ajile website at
http://ajile.ca/downloads and select the files for your operating system of choice. You will need to
enter in the login username and password which were supplied to you.

For Windows installations, download the most recent .exe installation package (e.g. ajile installer win64 2017-
07-11 1.0-4.exe). For Ubuntu installations, download the most recent .tar.gz archive for your Linux
distribution (e.g. for Ubuntu 16.04, ajile suite linux64 16.04 x86 64 2017-07-11 1.0-4.tar.gz).

1.2.2 Software Installation in Windows

Installing Prerequisites

To install the Ajile software in Windows we first need to install a few prerequisites which allow the
software to run. Prior to installing the Ajile software please install all Windows updates by opening the
Windows Update tool in Windows, checking for new updates, and selecting and installing all updates
which are recommended by Windows. Note that you may need to restart your computer several times to
complete the updates and each time after a restart you should again check for updates in the Windows
Update tool as new updates may become available once the previous updates have been installed.

Installing Ajile Software

Once all Windows updates have been installed, double-click and open the obtained Ajile software package
which is a .exe Windows installer (i.e. ajile installer win64 xxx.exe). This will open an installer program.
Follow the prompts to install the Ajile GUI and Ajile SDK Driver to the Program Files directory into
the Ajile directory (e.g. to C:\Program Files\Ajile). The installer also creates a shortcut in the start
menu for the Ajile GUI.

Starting the GUI

To run the Ajile GUI, find the Ajile folder in the start menu and select the Ajile GUI application.
Alternately, use the Windows search tool to search for Ajile GUI and select it from the Windows search.
This will launch the Ajile GUI and it will be ready for use.

Loading SDK Libraries

Python Libraries

Installing Python and NumPy

Ajile Suite Software Users Guide
2025-02-12

2

http://ajile.ca/downloads

Chapter 1. Introduction

To use the Ajile SDK for Python in Windows, you will first need to install Python and the NumPy
package for Python. Currently supported versions of Python are Python 2.7.x and 3.x, 64-bit versions
only. Download and install the latest 64-bit version of either Python 2.7.x or 3.x from http://www.

python.org.

Next, the NumPy package must be installed in your Python distribution since it is used as the main
tool to pass images between Python and the Ajile SDK. Details for installing NumPy can be found
at http://www.python.org. The easiest way to install NumPy however is with Python pip tool. If
your Python executable is installed at ‘C:\Python\python.exe’, then you can install NumPy from the
command line terminal with:

C:\> c:\Python\python.exe -m pip install numpy

Installing the Ajile Python Library

With Python and NumPy installed, the Ajile Python libraries are located at
‘C:\Program Files\Ajile\AjileDriver\lib python’ by default for Python 2.7.x, and at
‘C:\Program Files\Ajile\AjileDriver\lib python3’ for Python 3.x. To use them with your existing Python2.7
(or Python3) installation, copy the files ajiledriver.pyd and ajiledriver.py to your Python instal-
lation folder at %PYTHON HOME%\Lib\site-packages. Also copy all the .dll libraries from
‘C:\Program Files\Ajile\AjileDriver\lib thirdparty’ to %PYTHON HOME%\Lib\site-packages. These
are third party libraries (Pthreads and OpenCV) which the AjileDriver uses and needs to load. Once
this is done you should be able to load and use the ajiledriver from you Python programs. To test it
try:

C:\> python

>>> import ajiledriver

>>> project = ajiledriver.Project("Test")

>>> print project.Name()

Test

If you get similar output and the name of the Project is printed then your Python installation was
successful.

C++ Libraries

The Ajile C++ libraries are located at
‘C:\Program Files\Ajile\AjileDriver\lib’ by default. In addition the include headers are located at
’C:\Program Files\Ajile\AjileDriver\include. For building C++ applications using the Ajile SDK we use
Visual Studio 2017. In addition we use the freely available CMake (https://cmake.org/) to generate
Visual C++ projects that use the Ajile SDK. It is possible to use the include files and library files with
other build tools, but we show an example here based on CMake and Visual C++ 2017.

To build with CMake we first need a CMakeLists.txt file. The following is a minimal CMakeLists.txt file
which uses the AjileDriver.

Ajile Suite Software Users Guide
2025-02-12

3

http://www.python.org
http://www.python.org
http://www.python.org
https://cmake.org/

Chapter 1. Introduction

CMAKE_MINIMUM_REQUIRED(VERSION 2.8)

PROJECT(project_test)

SET(AJILEDRIVER_HOME "C:/Program Files/Ajile/AjileDriver/")

ADD_DEFINITIONS(-DWIN32_LEAN_AND_MEAN)

SET(SOURCE main.cpp)

INCLUDE_DIRECTORIES(

${CMAKE_CURRENT_BINARY_DIR}

${CMAKE_CURRENT_SOURCE_DIR}

${AJILEDRIVER_HOME}/include)

ADD_EXECUTABLE(project_test ${SOURCE})

TARGET_LINK_LIBRARIES(

project_test

${AJILEDRIVER_HOME}/lib/ajiledriver.lib)

A minimal main.cpp source file to accompany it would be as follows:

#include <ajile/AJObjects.h>

#include <iostream>

void main() {

aj::Project project("Test");

std::cout << project.Name() << endl;

}

You can create the preceding CMakeLists.txt file and main.cpp file into the same directory, then run
CMake and point the source directory where you created those files (i.e. run Configure followed by
Generate, see Figure 1.1). You can then open the generated Visual Studio solution and build it. This
will output an executable, project test.exe, into the Release or Debug directory. If you try to run
the executable you will likely get an error indicating that the ajiledriver.dll library is missing. To fix
this problem, copy the file ’C:\Program Files\Ajile\AjileDriver\lib\ajiledriver.dll as well as all the .dll
libraries from ’C:\Program Files\Ajile\AjileDriver\lib thirdparty’ to the location of your executable (e.g.
in Release or Debug). (Note that you can install the .dll libraries to a system directory instead of the
executable location.) You should then be able to run the executable in a console window and see the
name of the project displayed, see Figure 1.2 which shows a console window running the created program
alongside a Windows Explorer window which shows all files in the same directory.

1.2.3 Software Installation in Ubuntu

Installing Prerequisites

A number of Ubuntu packages are required to run the Ajile Software Suite. These are all installed
automatically by the install.sh script found in the Ubuntu software package archive. For details of which
packages will be installed please review this script.

Installing Ajile Software

To install the Ajile software in Ubuntu you will need to first extract the files from the .tar.gz archive
which you downloaded. This will extract a number of .deb Debian packages and an install.sh installaer
script in the same directory as the archive. The prerequisite packages and each of these Ajile packages
needs to installed by running the install.sh script, which will install the Ajile software into the proper
system directories. The steps to install the Ajile software in Ubuntu is therefore as follows:

1. Open a new Terminal window to get a system command line interface. On Ubuntu systems this
may be called Terminal in the Application → Accessories menu.

2. Change directories to the location where you downloaded the .tar.gz archive. For example if
you download the file to the /Downloads directory, the command to type in the terminal is cd

/Downloads.

Ajile Suite Software Users Guide
2025-02-12

4

Chapter 1. Introduction

Figure 1.1: Screenshot of CMake output.

Figure 1.2: Screenshot of Running a test program.

Ajile Suite Software Users Guide
2025-02-12

5

Chapter 1. Introduction

3. Extract the files from the .tar.gz archive with

tar xvf ajile_suite_linux64_xxx_xxxx.tar.gz

where xxx xxxx should be replaced with the characters in the file you just downloaded.

4. Install the Debian packages from the archive with the command

sudo bash ./install.sh

Starting the GUI

To start the Ajile GUI, enter the following command at the Terminal prompt:

ajile-gui

You can also start the Ajile GUI with Run Application dialog by pressing Alt-F2 in Ubuntu and entering
the command ajile-gui.

Loading SDK Libraries

The Debian packages installs the C++ Ajile driver library to /usr/lib, the C++ Ajile driver headers
to /usr/lib/ajile, and the Python Ajile driver to /usr/lib/python2.7/dist-packages. On most systems
these paths are automatically found by the C++ compiler (GCC) and by the Python interpreter and
you should be ready to start designing your own software using the Ajile SDK.

1.3 Device Driver Installation and Configuration

Ajile controllers come with a variety of communication interfaces including USB3, Ethernet and PCIe.
Depending on the communication interface that you are using and your operating system there may
need to be additional device drivers installed on the system to connect to the device. This section goes
through the driver installation for each communication interface, and any additional settings that need
to be made by the user in order to get the driver to work and to connect to the Ajile device.

1.3.1 USB 3.0 Drivers

For users with devices that have a USB 3.0 interface, the device drivers for USB 3 are built into the
Ajile installer and will be installed automatically when the installer is run. If you experience difficulty
with connecting to your device over USB 3, please refer to the Windows USB3 Troubleshooting Guide.
Contact Ajile technical support for further details.

1.3.2 PCIe Drivers and Configuration

For users with devices that have a PCIe interface, additional device drivers must be installed in order to
connect to the device. Please see the Ajile PCIe User Guide for further details.

1.3.3 Ethernet Configuration

For users with devices that have an Ethernet interface, all device drivers are already installed in the
operating system, however the IP address settings of your network interface card (NIC) must be updated
so that the NIC can connect to the Ajile device. Please see the documentation for your specific hardware
for details on what its IP address should be and how to set your IP address.

1.4 Running the Examples

The Ajile Software Suite installation comes with a number of example programs/projects so that you
can get started right away with running your Ajile devices. Most of the examples can be run in the GUI,

Ajile Suite Software Users Guide
2025-02-12

6

Chapter 1. Introduction

Figure 1.3: Screenshot of the Start Window, where we click on Example Projects to open the examples.

in Python and in C++. In this section we will see how to run the GUI examples, and how to install the
Python/C++ examples to a suitable location and build/run them. For demonstration purposes we show
how to load and run a DMD project which displays a generated checkerboard pattern and its inverse.
Other examples can be run in the same way.

1.4.1 Running the Examples in the GUI

When you first open the Ajile GUI you will be presented with the ’Start’ screen which shows a number
of icons to get you started. Click on ’Example Projects’ to open a new example project, see Figure
1.3.

Next, the list of available example projects will be shown in a new dialog box. The projects are categorized
starting with the device type (DMD, Camera, etc.) then with their subcategories. For this tutorial select
the ’DMD Binary Checkerboard Patterns’ example then click Next, see Figure 1.4.

Clicking Next will bring up a New Project dialog. Select the AJD-4500 kit and enter any Project Name
and Working Path (or leave them to the defaults) then click OK, see Figure 1.5. See Chapter 3 for more
details on creating Projects and Chapter 4 for information on selecting Components (i.e. kits).

This will create a new project using the checkboard pattern example project. You can view or even edit
the project using the Ajile GUI. To run the checkerboard pattern sequence on the connected DMD device
we use the Run Environment. Click on the Run Environment button on the left Menu buttons to open
in, see Figure 1.6, number 1. Next we must connect to the hardware device. This is done by clicking
on the ’Connect to HW’ button, see Figure 1.6, number 2. If successful you should see the connected
components and their properties displayed. If not then you will likely need to configure your connection
settings, see Chapter 9 for details.

When we are connected to the hardware device we load the project by clicking on the ’Load’ button,
see Figure 1.6, number 3. The load should be nearly instantaneous, then the ’Run’ button will appear.
Click the ’Run’ button (see Figure 1.6, number 4) and the checkerboard pattern should be displayed by
the device. Finally, click the ’Stop’ button to stop the sequence from being run.

Ajile Suite Software Users Guide
2025-02-12

7

Chapter 1. Introduction

Figure 1.4: Screenshot of the Example Projects Dialog where we can select an example project to load.

Figure 1.5: Screenshot of the creating a new Example Project.

Ajile Suite Software Users Guide
2025-02-12

8

Chapter 1. Introduction

1

2

3

4

Figure 1.6: Screenshot of running an example project.

1.4.2 Running the Examples with the SDK

The Ajile SDK examples are available in both Python and C++. On Windows they are located at
’C:\Program Files\Ajile\Documentation\examples’ and on Ubuntu Linux they are located at ’/usr/share/doc/ajiledriver-
doc/examples/’. The first step is to therefore copy the ’examples’ directory to a location which is user-
writable, e.g. on Windows copy ’C:\Program Files\Ajile\Documentation\examples’ to your Desktop or
on Linux copy ’/usr/share/doc/ajiledriver-doc/examples/’ to your home directory ’˜’.

Running the Examples in Python

Assuming that the Ajile Python libraries are installed correctly as above it is straightforward to run the
Python examples. Open a Command Prompt (Windows) or Terminal (Linux) and change directories to
the examples directory:

On Windows:

> cd C:\Users\ajile\Desktop\examples\dmd_binary_checkerboard\python

> python dmd_binary_checkerboard_example.py

On Linux:

$ cp -R /usr/share/doc/ajiledriver-doc/examples/ ~/

$ cd ~/examples/dmd_binary_checkerboard/python/

$ python dmd_binary_checkerboard_example.py

This should result in a checkerboard pattern being displayed by the connected DMD device.

Running the Examples with C++

Running the examples in C++ has one additional step over the Python examples which is that they must
be compiled first. To do this we use CMake. Assuming that you have CMake installed in the system

Ajile Suite Software Users Guide
2025-02-12

9

Chapter 1. Introduction

path you will run the following commands to generate the CMake project:

On Windows:

> cd C:\Users\ajile\Desktop\examples\dmd_binary_checkerboard\cpp

> cmake .

In Windows this creates a Visual Studio Solution .sln. Open the dmd binary checkerboard example.sln

file with Visual Studio and build it. If we build it in Release mode the executable will be located in the
Release subfolder. Finally, to run the compiled example do the following:

> cd C:\Users\ajile\Desktop\examples\dmd_binary_checkerboard\cpp\Release

> dmd_binary_checkerboard_example.exe

If you get an error message which says that you have missing .dll files, copy the .dll files from ’C:\Program
Files\Ajile\AjileDriver\lib’ and ’C:\Program Files\Ajile\AjileDriver\lib thirdparty’ to the Release direc-
tory, as was explained in Section 1.2.2.

On Linux:

> cd ~/examples/dmd_binary_checkerboard/cpp

> cmake .

In Linux this creates a Makefile. You can build the program then with make, then run the program:

> make

> ./dmd_binary_checkerboard_example

This should result in a checkerboard pattern being displayed by the connected DMD device.

1.5 Upgrading Ajile Software and Firmware

Ajile regularly releases new software and firmware versions which improve on performance, add new
features and fix certain bugs from previous versions. For nearly all new software releases it will be required
to first upgrade your device firmware before upgrading your PC software. The steps to upgrading your
Ajile software are as follows:

1. Upgrade device firmware using currently installed PC software. For example, if software version
3 is installed on the PC and firmware release 3 is installed on the device and we want to upgrade
the software/firmware to release 4, use the installed release 3 to first upgrade the device firmware,
since it is compatable with the currently running firmware.

2. Restart Ajile device.

3. Uninstall currently installed software on the PC.

4. Install new software release (e.g. software release 4) on the PC. Connect to the device and run
projects as usual.

The firmware and software upgrade steps are detailed below.

1.5.1 Upgrading Ajile Firmware

To upgrade the Ajile device firmware, first download the most recent firmware release from http://

ajile.ca/downloads. The downloaded filename will be of the format BOOT DMD release X.ajb, where
X is the release version number.

Next open the Ajile GUI and open the System Manager (which is available from the Start screen or from
the Navigation side bar.) With the System Manager open, physically connect the Ajile device which will
receive the firmware upgrade, and connect to the device with the ‘Connect to HW’ button (see Section

Ajile Suite Software Users Guide
2025-02-12

10

http://ajile.ca/downloads
http://ajile.ca/downloads

Chapter 1. Introduction

Figure 1.7: Screenshot of connecting with the System Manager.

9.1 for details on connecting.) When you are connected to the device you will see a screen similar to
Figure 1.7 where the currently connected device firmware version is shown.

With the device connected, select the downloaded firmware image (i.e. BOOT DMD release X.ajb) with
the ‘Select File’ button. Finally, click the ‘Update Software’ button. The system will ensure that the
selected firmware image is valid for the target device, then a dialog will appear to confirm whether or
not to proceeed with the firmware upgrade as in Figure 1.8. Click ‘Yes’ then a progress indicator bar
will appear, shown in Figure 1.9. The firmware update can take around 2 minutes to complete so do
not close the GUI or power off the device during this procedure. The progress percentage will increment
during this update. If the progress percentage stays at 0% for 2 minutes or more then there was likely
a communcation error when sending the firmware image to the device. If this happens power cycle the
device then reconnect and try again, or if using USB 3.0 try again but connecting using USB 2 instead.
If neither of these work then please contact Ajile support. Finally, when the firmware upgrade completes
a new prompt will appear and you will be instructed to power cycle the device. Do so and proceed with
the PC software upgrade detailed in the next section.

1.5.2 Upgrading Ajile Software

Upgrading the Ajile PC software involves first uninstalling the exisitng Ajile software from the system,
then installing the newly downloaded software release (from http://ajile.ca/downloads) in the same
way as described in Section 1.2.

To uninstall the Ajile software suite in Windows, use the ‘Add or remove programs’ Windows utility,
select the ‘Ajile Software Suite’, and click the ‘Uninstall’ button (note that there may be minor varia-
tions depending on your Windows version). When the uninstall completes you can re-install the newly
downloaded software release on the PC.

To uninstall the Ajile software suite in Ubuntu Linux we use the apt-get command from the command line.
Open a Terminal window to get a system command line interface and enter the following command:

sudo apt-get remove ajiledriver-doc ajile-gui python-ajiledriver libajiledriver

When complete the Ajile software suite will be removed from the system, after which you can re-install
the newly downloaded software release.

Ajile Suite Software Users Guide
2025-02-12

11

http://ajile.ca/downloads

Chapter 1. Introduction

Figure 1.8: Screenshot of a valid firmware image file.

Figure 1.9: Screenshot of firmware upgrade progress.

Ajile Suite Software Users Guide
2025-02-12

12

Chapter 2

Project Model Overview

At the core of the Ajile software framework is a hierchichal group objects which describe projects that
are to be run by Ajile hardware. These projects allow flexible image creation and projection by Ajile
structured light projectors as well as coordinated image capture by Ajile smart cameras.

The overall project model structure is shown in a tree-like structure in Figure 2.1. The central object
at the root of the hiarchy is the Project. This is the top level object which contains everything that is
needed to load and run sequences of images on multiple components. A brief overview of the core objects
within the project model will be described in this section. More detailed descriptions of these objects
and how to work with them are found further on in the documentation.

2.1 Projects

The Project contains multiple objects which are used for controlling Ajile components. These include
the descriptions of the Components themselves which map to physical hardware components, a store
of Images which can be randomly accessed by frames, and most importantly, highly controllable and
configurable Sequences and Sequence Items of Frames. Details about creating Projects is described in
Chapter 3.

2.2 Components

The Ajile suite is somewhat unique in that it is designed from the ground up to be able to control and
coordinate multiple imaging devices such as cameras, projectors and lighting controllers within a single
environment.

In the Ajile Project model, physical hardware devices (i.e. controller boards) are described by objects
called Components. There is one Component object per physical device. The first part of a Component
is its device descriptor which tells the system what kind of device it is. Examples of devices are the
DMD4500 DMD device, CMV4000 camera device and the application processor device.

A brief summary of some of the parameters which are stored inside Component objects is shown in Figure
2.2. Each Component holds its maximum image dimensions in rows and columns (in the case of imaging
devices), its default, minimum and maximum LED settings (i.e. for a DMD projector) and its current
trigger settings (e.g. rising/falling edge triggers, hold time, etc.). Components are typically either read
out from the currently connected device, or read from hardware description files which come with the
Ajile software suite. More details about setting up and working with Components will be described in
Chapter 4.

13

Chapter 2. Project Model Overview

Project

• Project name

Sequences

• ID

• Repeat count

• Device type

• Seq. type

Sequence Item

• Repeat count

Frames

• Image ID

• Frame time

• ROI settings

• Parameters

Triggers

• Enabled

• Delay

LED Settings

• Current

• PWM

• On time

• Delay

Images

• ID

• Width/Height

• Type

• Data

Components

• Device descriptor

• No. of rows/columns

• Triggers types

Led Properties

• Default settings

• Max. settings

• Min. settings

• Temperature limits

LED Settings

• Current

• PWM

• On time

• Delay

Trigger Settings

• Type

• Hold time

Trigger Rules

• Component IDs In

• Trigger IDs In

• Component IDs Out

• Trigger IDs Out

Figure 2.1: Overview of the Ajile Project model. Projects are made up of the lists of components and
triggering rules along with images and sequences which will be run by those components.

Ajile Suite Software Users Guide
2025-02-12

14

Chapter 2. Project Model Overview

Project

Components

• Device descriptor

• No. of rows/columns

• Triggers types

Led Properties

• Default settings

• Max. settings

• Min. settings

• Temperature limits

LED Settings

• Current

• PWM

• On time

• Delay

Trigger Settings

• Type

• Hold time

Figure 2.2: Component objects.

Project

Images

• ID

• Width/Height

• Type

• Data

Figure 2.3: Image objects.

2.3 Images

Projects contain a store of multiple Images where each individual Image can be randomly accessed by
referring to its unique Image ID. As summarized in Figure 2.3, Image objects describe the dimensions
(width/height) of each image, the type of image which it referrs to (e.g. 1-bit monochrome, 8-bit
grayscale, etc.), and of course a reference to the image data itself which is stored as a 2-dimensional
array of pixel values. The Ajile software suite has tools for reading, writing and manipulating Images.
These are described in detail in Chapter 5.

2.4 Sequences, Sequence Items, Frames

One of the the most useful features of the Ajile suite is the ability to seperate control and timing
instructions from the bulk image data transfers involved in image display and capture. To accomplish
this, Projects contain one or more Sequences of Frames which describe the display/capture parameters
such as frame time (exposure time) and lighting values. In addition, each Frame is linked to an individual
Image which is stored in the Project via its unique Image ID. In this way we have a compact set of objects
which describe the frame control information which is transmitted and handled seperately from image
data, allowing for much tighter and lower latency control than would be possible if this control information
were embedded within image data.

Another feature which the Sequence and Frame structure enables is the ability to control individual
parameters involved in image display or capture on a frame by frame basis, since each Frame object
contains all of the imaging parameters needed for the current frame and is completely independant from
neighbouring frames. Some of the available parameters under user control in Sequences of Frames are
shown in Figure 2.4. Each Sequence is referred to by its Sequence ID, and within each sequence are
a number of Sequence Item objects. Sequences and Sequence Items can repeat one or more times by
modifying its repeat count. Within each Sequence Item is contained one or more Frame objects, where
each Frame corresponds to an individual image display or image capture event. A user can adjust any
of the Frame parameters, such as the associated Image ID, the frame time, the region of interest (ROI)
as well as lighting and trigger settings.

By offering a hiearchy of Frames which are contained in Sequence Items that can repeat multiple times,
which are then contained in top level Sequences which can also repeat, we can enable very sophisticated

Ajile Suite Software Users Guide
2025-02-12

15

Chapter 2. Project Model Overview

Project

Sequences

• ID

• Repeat count

• Device type

• Seq. type

Sequence Item

• Repeat count

Frames

• Image ID

• Frame time

• ROI settings

• Parameters

Triggers

• Enabled

• Delay

LED Settings

• Current

• PWM

• On time

• Delay

Figure 2.4: Sequence, Sequence Item and Frame objects.

sequences of frames. Figure 2.5 shows an example Sequence which contains multiple Sequence Items and
Frames, along with repeat counts. When this example Sequence is run on the target component, the first
Sequence Item and all of the Frames within it are run. The Frames within the first Sequence Item are
repeated for whatever number of times are specified in the Sequence Item repeat count. Once the first
Sequence Item has been run for its desired number of repeats, the second Sequence Item is run, and so
on, until the final Sequence Item is reached. Once the final Sequence Item in the Sequence has completed,
the entire Sequence then gets repeated for the desired repeat count stored in the Sequence. Also note
from Figure 2.5 that each Frame has its own independant parameters which get executed sequentially,
and each Frame refers to an Image in the Project using the Image ID parameter. Details of working with
Sequences is described in Chapter 6.

2.5 Lighting

The Ajile suite includes high performance lighting controllers which allow users a great deal of flexibility
for defining LED settings. Lighting parameters can be set up on a frame by frame basis for each individual
LED channel. These lighting parameters are contained in Frame objects as shown in Figure 2.4 and they
take effect during the period of the Frame in which they are contained. Lighting parameters which are
under per frame control include LED current, LED pulse-width modulation (PWM) percentage, total
LED on time for the frame, and the delay time after the start of the frame when the LEDs should turn
on. While an incredible amount of control is possible for the Ajile lighting controllers, these settings
can also simply be set to the Project level defaults for each component by using the Component LED
Properties (see Figure 2.2) for cases when this additional control is not necessary. Specific details of
setting up lighting, from basic settings to more advanced usage, is covered in Chapter 7.

2.6 Triggers

Since the Ajile suite at its core deals with multiple components and the interactions between them, the
system includes not only a wide range of different hardware and software triggering options, but also has
a sophisticated Trigger Rules engine to enable a level of control and synchronization between devices not
previously possible.

Each imaging component (e.g. camera, DMD) has a set of device state signals which it outputs and a
number of device control signals which are inputs. Examples of device state output signals include the
beginning or end of a frame, the beginning or end of frame lighting, and a signal to indicate that the next
frame is ready. Examples of device control input signals include start the next frame, end the current
frame, and start or end the frame lighting.

Device states are output from the device whenever the associated event occurs. For example, the ’be-
ginning of frame’ event for a DMD device can be observed immediately when the DMD micromirrors
are updated to the next image, or likewise for a camera device the ’beginning of frame’ event appears
when the camera exposure begins. On the other hand, device controls are inputs into a device where

Ajile Suite Software Users Guide
2025-02-12

16

Chapter 2. Project Model Overview

Image N
-Image Type
-Width
-Height
-Compression
-Image Data

Image 2
-Image Type
-Width
-Height
-Compression
-Image Data

Sequence 1
-Sequence Type
-Trigger Settings

Sequence Item 1

Frame 1.1
-Image ID
-Exposure Time
-ROI
-LED Settings
-Trigger Settings

Frame 1.2
-Image ID
-Exposure Time
-ROI
-LED Settings
-Trigger Settings

Frame 1.N1

-Image ID
-Exposure Time
-ROI
-LED Settings
-Trigger Settings

...

Sequence Item 2
-Trigger Settings

... ...

F
ra

m
e
 2

.1

F
ra

m
e
 2

.N
2

Sequence Item M
-Trigger Settings

...

F
ra

m
e
 N

.1

F
ra

m
e
 M

.N
M

Image 1
-Image Type
-Width
-Height
-Compression
-Image Data

...
Image Storage

Repeat Count Repeat Count Repeat Count

Repeat Count

-Trigger Settings

Figure 2.5: Sequence object model in a timeline view. Sequences contain one or more Sequence Items
and each Sequence Item contains one or more frames. Each frame contains its own display/capture
parameters including frame time, image ID, region of interest and lighting settings which can be flexibly
varied on a per frame basis.

Ajile Suite Software Users Guide
2025-02-12

17

Chapter 2. Project Model Overview

DMD Sequence 1

Series 1

Frame 1

DMD

Lighting
Started

Start
Frame

Nxt Frm
Ready

Camera Sequence 2

Series 1

Frame 1

Start
Frame

Nxt Frm
Ready

Camera

Start
Frame

Nxt Frm
Ready

External Trigger In 1

External Trigger Out 1

+

+

Frame 2

Lighting
Started

Start
Frame

Nxt Frm
Ready

Frame 2

Start
Frame

Nxt Frm
Ready

Start
Frame

Nxt Frm
Ready

+

+

Time

Trigger Rule 2:

Trigger Rule 1:

DMD Lighting Started

Camera Start Frame

DMD Next Frame Ready
AND

Camera Next Frame Ready
AND

External Trigger In 1 is High

DMD Start Frame

DMD Next Frame Ready
AND

Camera Next Frame Ready

Fire External Trigger 1

Trigger Rule 3:

Figure 2.6: A set of three Trigger Rules defined by the Project which are evaluated in hardware to
enable very tight synchronization between devices.

it pauses its operation until the control signal is observed. For example, if a ’start next frame’ device
control is enabled for a DMD device, the DMD will remain paused with the previous frame’s image until
a ’start next frame’ signal is received, after which the DMD performs a reset and the micromirrors are
immediately updated. Similarly for a camera, a received ’start next frame’ signal immediately begins
the exposure of the next frame.

Any of the device state outputs of a component can be connected to any of the device control inputs
of another or the same component in order to provide tight synchronization between components. In
addition, Ajile hardware devices include a number of input/output (IO) ports which provide external
trigger signals for synchronizing Ajile components with external hardware devices such as other light
sources or cameras. Device state outputs can be mapped to external output triggers where they are
transformed into external signals, either rising or falling edge sensitive pulses or level sensitive states.
External input triggers can be mapped to device control inputs, so that either edge sensitive or level
sensitive signals from external devices can trigger Ajile components to take action.

Finally, the Ajile suite lets users specify multiple Trigger Rules per Project which allow for device
controls and device states to be logically combined together to create a very high level of control over
synchronization. These Trigger Rules are defined within the Project model, seen in Figure 2.1, using
tools in the Ajile GUI and SDK. Each rule is evaluated in FPGA hardware in just 10 nanoseconds per
rule while Sequences are running, resulting in very low latency synchronization. An example of a set of
Trigger Rules is shown in the diagram of Figure 2.6, where the Sequences being run on both a DMD and
a Camera as well as external trigger ports are drawn horizontally with respect to the time axis. In this
example there are three Trigger Rules present. Trigger Rule 1 states that when the DMD ready for reset
signal (i.e. the next frame is ready device state) is present AND when the camera next frame is ready
state is also present, then fire an external output trigger signal on trigger output port 1. Trigger Rule 2
states that when both the DMD AND camera next frame ready states are present AND when an external
input trigger signal on input port 1 is high, then reset the DMD device (i.e. begin the frame). Finally,
Trigger Rule 3 states that when the DMD lighting turns on, then begin the camera frame. The overall
result of this set of three trigger rules is a DMD and camera synchronized perfectly with each other and
with an external hardware device. Details of working with Triggers and Trigger Rules is described in
Chapter 8.

Ajile Suite Software Users Guide
2025-02-12

18

Chapter 3

Projects

In Chapter 2 we saw the Project object model framework in the Ajile software suite. The Project is the
root of the hierchy of objects. This top level container has the list of the Components representing the
physical hardware, a store of Images which will be used by the Components, a store of Sequences will be
run by devices, a list of Trigger Rules connecting and synchronizing components, and a store of image
pipeline results.

3.1 Project Members

Table 3.1 describes the most important members that belong to Projects. For further details of each of
these and any additional Project members please refer to later sections of this guide or to the Ajile SDK
Reference.

3.2 Creating New Projects

The first step to working with Projects in the Ajile suite is to create one. Creating projects is simple; here
we describe how to create new projects using either the GUI or programmatically with the SDK.

3.2.1 Creating New Projects in the GUI

When the GUI is first opened (see Section 1.2.2 for starting the GUI) there will be no project opened and
all GUI buttons are disabled until a new project is created or loaded. To create a new project, simply click
the ’File’ menu in the top menubar of the GUI and select the ’New Project’ (Figure 3.1). This opens a
new dialog which lets the user create a new project. As seen in Figure 3.2, with this dialog we can change
the Project name to any text name (less than 255 characters). We can also change the working path
where the Project and all of its files including any imported images will be stored. By default the working
path is set to point to the user’s home directory under $home/Ajile/Projects/user project name, but can
be changed to any permissable path on the filesystem. Beneath the working path is the Components
selection. Components must be configured right up front when creating the Project because different
types of components will change the way in which Images and Sequences are created. Users can either
select from one of several pre-defined sets of components, called kits, or connect to the hardware device
and discover the list of components by querying the hardware. Components will be discussed in detail
in Chapter 4. For now, we simply select any of the pre-defined kits which matches our current hardware
(e.g. the Microzed Controller, DMD 4500 and CMV4000 Mono Camera). After clicking ’OK’ the new
project will be created and opened and the GUI buttons will become active.

The Project Editor widget will initally open which lists the current Project name, working path and
components in the system. Certain properties within the components can also be edited in the Project
Editor, which will be described in other sections.

19

Chapter 3. Projects

Name Description
Project Name An optional human readable text string which can be used to identify

projects. Can be any text string with a length between 0 and 255
characters. Can be left blank if not needed.

Working Path Working path (directory) on the filesystem where the project and its
associated files are stored. This is a text string absolute path. For
projects that are completely generated and stored in memory and do
not use the filesystem, this can be left blank.

Components List of components that describe the hardware which the project uses.
Images Store of images which are used by the project. An individual image

with a specific Image ID is retrieved from the Images store by using
its unique Image ID. Image IDs start at Image ID 1, and are typically
incremented sequentially up to a maximum Image ID of 65535.

Trigger Rules List of trigger rules which allow components to synchronize with each
other and with external hardware.

Image Pipeline Results Store of image pipeline results which have been evaluated in the
project. Similarly to the image store, each individual image pipeline
results is referred to by its Image Pipeline Results ID.

Table 3.1: Description of members that are in a Project.

Figure 3.1: Screenshot of creating a new Project.

Ajile Suite Software Users Guide
2025-02-12

20

Chapter 3. Projects

Figure 3.2: Screenshot of setting the initial Project parameters.

3.2.2 Creating New Projects in the SDK

Creating components programmatically using the Ajile SDK is accomplished by instantiating a new
Project object and changing any necessary members which were described in Section 3.1. After loading
the necessary SDK libraries into the source file (in either Python or C++ languages, see Section 1.2.2),
we create a new Project object in Python in Listing 3.1 and in C++ in Listing 3.2. We first create the
Project object and set the project name and working path with the constructor. We then modify the
project name and working path and output their values.

1 from ajiledriver import ∗ # import Ajile SDK library
create a new project and set the name and workingPath

3 myProject = Project(”My First Project”, ”path/to/my/project”)
change the project name and working path

5 myProject.SetName(”New Project”)
myProject.SetWorkingPath(”˜/Ajile/Projects/New Project”)

7 print ”myProject.name: ” + myProject.Name()
print ”myProject.workingPath: ” + myProject.WorkingPath()

Listing 3.1: Python example of creating and modifying a basic project.

*

#include ”AJObjects.h” // import Ajile SDK library
2 using namespace aj;

#include <iostream> // import cout for printing
4 using namespace std;

void FirstProjectExample() {
6 // create a new project and set the name and workingPath

Project myProject(”My First Project”, ”/path/to/my/project”);
8 // change the project name and working path

myProject.SetName(”New Project”);
10 myProject.SetWorkingPath(”˜/Ajile/Projects/New Project”);

cout << ”myProject.name: ” << myProject.Name() << endl;
12 cout << ”myProject.workingPath: ” << myProject.WorkingPath() << endl;
}

Listing 3.2: C++ example of creating and modifying a basic project.

3.3 Saving and Opening Projects

After creating and modifying Projects, we will naturally need to be able to save the Project to the
filesystem and later re-open it and continue to work with it.

Ajile Suite Software Users Guide
2025-02-12

21

Chapter 3. Projects

Figure 3.3: Screenshot of opening an existing Project.

3.3.1 Saving and Opening Projects in the GUI

Saving a project is accomplished in the Ajile GUI by clicking on the ’File’ menu in the top menubar as we
did for creating a new Project, and selecting the ’Save Project’ menu item. Note that the top titlebar of
the GUI main window shows the Project name which we entered earlier with an asterisk (’*’) next to it
indicating that changes have been made to the Project without saving it. Selecting ’Save Project’ stores
the Project on the filesystem in the project working path with the filename projectName.xml, where
projectName is the name which we entered for our project. The ’Save Project As’ allows one to save a
copy of the currently open project to a new location and optionally with a new project name. The Save
As dialog has the same appearance as the create project dialog which was seen in Figure 3.2.

To open an existing project, we click on the ’File’ menu and this time select ’Open Project’. This
opens a file browser dialog to the default location in the user home directory where projects reside (i.e.
$home/Ajile/Projects/). Navigate to the working path where the desired project resides, then open the
projectName.xml file within that directory. For example, in Figure 3.3 we open a project named MyPro-
ject123 by selecting ’MyProject123.xml’ located in /home/jeremyg/Ajile/Projects/MyProject123/ on
the author’s Linux system (note on a Windows 7 system the home directory would instead typically be
C:\Documents and Settings\users\jeremyg\Ajile\Projects). After clicking the ’Open’ button the project
will be opened in the GUI and we can continue to work with it.

Ajile Suite Software Users Guide
2025-02-12

22

Chapter 3. Projects

3.3.2 Saving and Opening Projects in the SDK

Saving and opening projects in the SDK is done via two functions inside the Project - Project.SaveToFile(filename.xml)
and Project.LoadFromFile(filename.xml). An example of saving a project to a filename of MyPro-
ject123.xml in the local directory, then opening it into a new Project object, and verifying that it is
was properly loaded by comparing the opened project name against the saved project name, is given in
Python in Listing 3.3 and in C++ in Listing 3.4.

1 # save the project to an XML file
myProject.SaveToFile(”MyProject123.xml”)

3 # open a project from a file
newProject = Project()

5 newProject.LoadFromFile(”MyProject123.xml”)
print (newProject.Name() == myProject.Name())

Listing 3.3: Python example of saving a Project and re-opening it as new Project.

1 void SaveOpenProjectExample(Project myProject) {
// save the project to an XML file

3 myProject.SaveToFile(”MyProject123.xml”);
// open a project from a file

5 Project newProject;
newProject.LoadFromFile(”MyProject123.xml”);

7 cout << (newProject.Name() == myProject.Name()) << endl;
}

Listing 3.4: C++ example of saving a Project and re-opening it as new Project.

Ajile Suite Software Users Guide
2025-02-12

23

Chapter 4

Components

After creating an initial Project, the next step is to define the types of physical hardware components
which the project is intended to run on. The description of the hardware devices in our system is defined
by a list of objects within the Ajile project called Components. Each physical controller board, such as a
DMD controller, camera controller or application processor board, has a Component within the project
to describe its parameters.

4.1 Component Members

The most important members of Components are listed in Table 4.1. A device descriptor has an identifier
which indicates the type of hardware that the component describes. The device states and device controls
are listed so that users know the ways in which external devices can interact with the component.
The maximum number of rows (width) and columns (height) of images on the device is given. The
LEDs are listed and described, along with their default, maximum and minimum settings. Lastly, the
external trigger interface signals are listed and their properties and triggering conditions can be read and
set.

4.2 Initializing Components

There are a few ways to initialize the list of Components which describe the target hardware. The first is
to read the list of components from a hardware description file which is included with the Ajile software
suite. The next is to connect to the hardware over one of the communication interfaces (e.g. Gig-E, USB
3.0, etc.) and query the hardware for the list of components. The third option is the manally create the
list of components by specifying each of its properties.

Once the list of components has been set up, they are added to the Project so that they can be used.
This section will describe the different ways of initializing the system components.

4.2.1 Reading Components Kits from File

Probably the simplest way of initializing the list of hardware components is to read them from a hardware
description file. The hardware description files are simply Project files stored in .xml format which have
been included with the Ajile software suite to make configuring the list of components more straight-
forward. The hardware description Project files have within them lists of components which correspond
the the most common configurations of Ajile devices. These common configurations are known as kits,
and a list of the current kits is summarized in Table 4.2. The basic idea is to read the hardware descrip-
tion Project from its ’.xml’ file (see Section 3.3) then copy the list of components from the hardware
description project into our own Project.

24

Chapter 4. Components

Name Description
Device Descriptor A unique identifier which maps to the type of device which this com-

ponent defines. Also included with the device descriptor are the device
hardware and software revisions.

Device States The list of device state output signals which are available to be mon-
itored, such as frame started/ended and lighting started/ended.

Device Controls The list of device control input signals which are available to syn-
chronize the component, such as start/end the frame and start/end
lighting.

Number of Rows/Columns The maximum number of image rows and columns (resolution) avail-
able for the device. The DMD4500 device has 912 × 1140 rows by
columns for example.

LED Properties The list of device LEDs and their minimum, maximum and default
settings such as current settings and on times.

External Trigger Settings The list of input and output external trigger ports available on the
device and their properties.

Image Pipeline Descriptor The list of image pipeline operators which can be applied to images
going in and out of the device.

Table 4.1: Description of members that are in a Component.

Reading Component Kits in the GUI

We already had a brief introduction with reading a component kit in the GUI when we created a new
Project in Section 3.2.1 where we selected a kit in the new project dialog seen in Figure 3.2 in order to
create the project. To select a specific hardware configuration to match the target hardware components,
simply click the Selected Kit dropdown menu and select the kit of components which best matches the
target hardware.

Reading Component Kits in the SDK

Reading components from kit project files using the SDK is done by reading the desired .xml project
file corresponding to the target hardware as a new project, then copying the list of components from the
read project into our existing project. This is shown in Python in Listing 4.1 and in C++ in Listing 4.2.
The kit project with filename ’hw AJ8500M.xml’ is read into the project kitProject, then we set the
list of components in our existing project, myProject, to the components in kitProject. This is done
by using the Project functions Project.SetComponents() and Project.Components() to set and get
the list of components, respectively. The number of components in our project is then printed, which
in this case will be 3 since the AJ8500M kit configuration has within it the Microzed Controller, DMD
4500 and CMV4000 Mono camera as shown in Table 4.2.

Kit Name Component List Filename
AJ4500 Microzed Controller, DMD 4500 hw AJ4500.xml
AJ4000M Microzed Controller, CMV4000 Mono Camera hw AJ4000.xml
AJ8500M Microzed Controller, DMD 4500, CMV4000 Mono Camera hw AJ8500M.xml

Table 4.2: List of a number of kits (sets of components) which are provided with the Ajile software
suite.

Ajile Suite Software Users Guide
2025-02-12

25

Chapter 4. Components

load the kit file as a new project
2 kitProject = Project()

kitProject .LoadFromFile(”./Config/hw AJ8500M.xml”)
4 # copy the components which were read into our own project

myProject.SetComponents(kitProject.Components())
6 print ”Number of components: ” + str(len(myProject.Components()))

Listing 4.1: Python example of reading components from a kit Project file and copying the components
list into our own Project.

void ReadComponentKit(Project myProject) {
2 // load the kit file as a new project

Project kitProject ;
4 kitProject .LoadFromFile(”./Config/hw AJ8500M.xml”);

// copy the components which were read into our own project
6 myProject.SetComponents(kitProject.Components());

cout << ”Number of components: ” << myProject.Components().size() << endl;
8 }

Listing 4.2: C++ example of reading components from a kit Project file and copying the components
list into our own Project.

4.2.2 Retrieving Components from the Hardware

Reading the list of components from a hardware description kit file as shown in the previous section
is simple and convenient since it allows one to set up projects offline without access to the physical
hardware. If the hardware is connected to our PC however, another good approach to getting the list of
components into our project is to connect to the hardware device and retrieve the component list directly
from the device. This has the advantage that we can be sure that the list of components is completely
accurate and up to date since we are retrieving them directly.

This method of retrieving the component list does require one to connect to the hardware and interact
with the device drivers. These topics are covered in detail in Chapter 9 so the reader may wish to
familiarize with the overall architecture of device drivers and connecting to the hardware in Chapter 9
and Section 9.1 before continuing with this section.

Hardware Discovery in the GUI

To retrieve the list of components from the hardware in the GUI, when we are creating the project
and the new project dialog is present (see Figure 3.2) we change the Component Selection radio button
choice from its default of ’Select Kit’ to ’Discover Hardware’, as seen in Figure 4.1. Initially we are
disconnected from the hardware device. When we click on the ’Connect’ button the GUI software will
automatically connect to the hardware device using the current connection settings and will retrieve the
list of components. This retrieved component list will then appear in the ’Discoverd Kit’ text box, after
which we will be able to press ’OK’ to accept the components and create the project using them. It
is possible to change the connection settings before pressing the ’Connect’ button by clicking on ’Edit
Connection Settings’ - for specific details on how to do this however, please refer to Section 9.1.1.

Retrieving Components from Hardware in the SDK

To retrieve components from the hardware in the SDK we need to have a basic understanding of the
device drivers and how to connect to the device, which is explained in detail in Chapter 9. For now, it
is sufficient to know that interaction with the hardware takes place through a central object called the
HostSystem which runs on the host PC. Within this HostSystem module there is an internal Project
object which keeps track of the state of the connected device including the list of components which are
currently present.

To retrieve the component list from the hardware in the SDK we need to first start the HostSystem.
As will be explained in Chapter 9, starting the HostSystem causes it to connect to the device using the

Ajile Suite Software Users Guide
2025-02-12

26

Chapter 4. Components

Figure 4.1: Screenshot of hardware discovery of the component list.

current connection settings, then retrieve the current state of the connected device along with its list of
components.

Once the HostSystem has been successfully started, to get the list of components from the connected
hardware we simply need to copy the component list from the internal Project of the HostSystem into our
own project. This is accomplished with the function HostSystem.GetProject() which gives us access
to the internal system Project, followed by getting the list of components from that returned project via
Project.Components() as we saw in Section 4.2.1. An example of retrieving the components from the
hardware by using the HostSystem is given in Listing 4.3 in Python and in Listing 4.4 in C++. The
important thing to observe in this section is that setting and getting the list of components is identical
to what we have already seen when reading projects from hardware kit files, with the only difference now
being that the component list now comes from a project within the device driver instead of from a file
on the filesystem.

1 # initialize the system module and start it
system = HostSystem.Instance()

3 system.StartSystem()
copy the components from the system into our own project

5 myProject.SetComponents(system.GetProject().Components())
print ”Number of components: ” + str(len(myProject.Components()))

Listing 4.3: Python example of retrieving components from the connected hardware by using the Project
inside the HostSystem module.

1 #include ”HostSystem.h”
void RetrieveComponents(Project myProject) {

3 // initialize the system module and start it
HostSystem system;

5 system.StartSystem();
// copy the components from the system into our own project

7 myProject.SetComponents(system.GetProject()−>Components());
cout << ”Number of components: ” << myProject.Components().size() << endl;

9 }

Listing 4.4: C++ example of retrieving components from the connected hardware by using the Project
inside the HostSystem module.

Ajile Suite Software Users Guide
2025-02-12

27

Chapter 4. Components

4.2.3 Creating Custom Components

In most cases it will be sufficient to read the list of components from a hardware kit file or retrieve the
list of components from the physical hardware. However for completeness we will briefly discuss how to
create custom components from scratch if needed. This functionality is not available in the GUI but can
be accessed using the SDK.

The example in Listing 4.5 and 4.6 (in Python and C++) shows how we create a new component and
set its device type to a DMD 4500 device on initialization, then add the component the our project’s
list of components using the function Project.AddComponent(). In a practical example, the created
component would likely need many more of its data structures need to be set in order to be useful, such
as the LED properties, the device states/controls and so on. These topics will be covered in later sections
and so we do not go into their details here.

1 # create a new component and set its device type
myComponent = Component(DeviceDescriptor(DMD 4500 DEVICE TYPE))

3 # add the component to the project
myProject.AddComponent(myComponent)

Listing 4.5: Python example of creating a Component and adding it to a Project.

void CreateComponent(Project myProject) {
2 // create a new component and set its device type

Component myComponent = Component(DeviceDescriptor(DMD 4500 DEVICE TYPE));
4 // add the component to the project

myProject.AddComponent(myComponent);
6 }

Listing 4.6: C++ example of creating a Component and adding it to a Project.

4.3 Configuring Components

Components have a number of different properties which were seen in Table 4.1. When reading the list
of components from a kit file (Section 4.2.1) or directly from the hardware (Section 4.2.2) most of the
properties should typically only be read and not changed. A few of the properties however, such as the
default LED settings and external trigger settings will need to be modified by users in many instances.
The details of LED settings are discussed further in Chapter 7 while details of triggers are given in
Chapter 8, however in this section we introduce the basic tools in the GUI or SDK which allow us to
configure these settings at the component level.

4.3.1 Configuring Components in the GUI

Configuring components in the GUI is done in the Project Editor which is shown in Figure 4.2. When
a project is first created the Project Editor is the first interface to appear, however navigating to the
Project Editor is done by clicking on the Project Editor button on the left navigation bar (Figure 4.2,
number 1). The list of components present in the project is shown in the System Components list (Figure
4.2, number 2) and any of the components in the project can be selected in order to inspect and modify
its properties. In Figure 4.2 the DMD 4500 component is selected. Basic component settings are shown
in the Component Settings box (Figure 4.2, number 3) such as the number of available image rows and
columns on the device. The details of each of the LEDs is shown in the LEDs table (Figure 4.2, number
4) which includes the LED descriptions and the minimum, maximum and default LED curents, PWM
settings, on time and delay. Most LED properties are read only, however the default values can be
adjusted which will be discussed in Chapter 7. Finally, the external trigger settings and device state
outputs and device control inputs are listed in the Triggers table (Figure 4.2, number 5). The DMD 4500
component does not have any external triggers so only its device states and controls are listed.

Ajile Suite Software Users Guide
2025-02-12

28

Chapter 4. Components

1

2

3

4

5

Figure 4.2: Screenshot of the Project Editor in the Ajile GUI. Project settings and components can be
configured with this editor.

4.3.2 Configuring Components in the SDK

In the Ajile SDK a number of functions are available in the Component object to get and set any of its
members. In most cases when it is necessary to modify a component in the project, the component must
be modified externally to the project then added back into the project using the Project.AddComponent()
function since the component list is read-only within the Project object itself. There are however a few
Project level functions which allow users to more easily configure component settings. For example the
function Project.SetDefaultLedSetting() sets the default LED setting of a specific LED for a specific
component within the project without having to read, edit the re-add the component each time. These
functions will be described in the coming chapters as well as in the Ajile SDK Reference.

Ajile Suite Software Users Guide
2025-02-12

29

Chapter 5

Images

The Ajile suite specializes in creating and projecting images with DMD structured light projectors and
capturing and processing images with smart cameras. Both cameras and projectors treat images in a
very similar way, the only difference is of course the direction of image data movement. For cameras
the captured images are created on the camera, transferred to the Ajile Controller and finally to a PC,
whereas for projectors the images are created on a PC then are transmitted to the Ajile controller and
finally to the DMD device for display. As will be seen in later chapters, it is also possible for Ajile suite to
omit the PC from the equation completely and perform all imaging with the embedded Ajile Controller
directly controlling the DMD or camera in a self-contained smart system.

Ajile projects have within them a random access image store. Each Image data structure can be retrieved
and updated from the project by using its unique Image ID. Frames within sequences refer to an individual
Image in the project by its Image ID. Frames therefore hold all the timing and control information for
performing the image display (for a DMD) or image capture (for a camera) operations, while the Images
which they refer to hold the actual image data.

5.1 Image Members

Images have a number of parameters which describe what type of image it is and its dimensions (width
× height), similar to an image header found in common image formats. Images also of course contain
the actual image data, which is an array of pixel values, and if applicable the filename of the image. A
listing and description of the most important members of an Image is given in Table 5.1.

5.2 Image Data Format

Different image based devices work with images in a variety of different formats. For example, DMD
projectors use an array of binary (1 bit per pixel) images, some camera devices use grayscale 10-bit or
12-bit per pixel images, while typical commerical monitors can display 24-bit colour images. Converting
images to and from these different formats can sometimes be labourous, which is why the Ajile software
suite has functions in both the GUI and SDK which make importing and exporting images from and to
different formats an easy process. Before going into the details of these image handling functions we will
describe some of the typical image formats which will be needed by Ajile devices.

Images are stored as an array of pixel data values. Depending on the system there are many parameters
which define how the pixel data values are ordered in the image array. The width, or number of columns,
and the height, or number of rows, in the image, are the first parameters which must be known. Typical
values are a width of 912 columns and a height of 1140 rows for the DMD 4500 device, or a width and
height 2048 by 2048 for a 4 megapixel camera. The width and height (or the number of columns and
rows) are shown along the axes in Figure 5.1, which shows an image represented as a rectangular array
of pixels which is 8 columns wide and 6 columns high.

30

Chapter 5. Images

Name Description
ID A unique identifier to the project which allows each image to be refer-

enced and retrieved within the project image store. Image IDs must
be greater than zero (0) since the image with ID zero refers to the
special NULL (unassigned) image.

Width/Height The image dimensions given by the width and height, in number of
pixels, of the image.

Bit Depth The number of bits per pixel for the image.
Number of Channels The number of colour channels for the image (e.g. 1 for grayscale, 3

for RGB colour).
Image Major Order The major order of pixels within the image. Possible values are row-

major order or column-major order.
Image Name An optional human readable text string which can be used to help

describe the image. Can be left blank if not needed.
Filename The file name on the filesystem of the image. Can be an absolute path

file name, or a relative path filename to the project working path. Can
also be left blank if the image is stored completely in memory without
using the filesystem.

Memory Address Used in the SDK only, this is a pointer to the first pixel of the image
pixel data array which can be used to read or manipulate the raw
image data.

Size Used in the SDK only, indicates the size, in bytes, of the image data
memory.

Table 5.1: Description of members that are in an Image.

The next parameter which must be known is the number of colour channels in the image. Monochrome
devices that use or produce grayscale or binary images have a single (gray) colour channel, whereas
colour device will typically have three colour channels (red, green and blue). Figure 5.1 (a) represents
an image with a single channel per pixel, while Figure 5.1 (c) shows an image with three channels (red,
green and blue) per pixel.

The bit depth per pixel (i.e. the number of bits which represent each given pixel value) is the next
parameter which needs to be determined. Most typical images found tend to have a bit depth of 8-bits
per pixel since each 8-bit pixel value conveniently fits within a single byte, making these images the
easiest to work with on most systems. The native image format of many hardware devices however do
not use 8-bit images. The DMD 4500 device for example uses a bit depth of 1-bit per pixel, since each
DMD micromirror can only have two possible states. Ajile cameras with CMOSIS image sensors on the
other hand use 10 bits or 12 bits per pixel. In Figure 5.2 (a) three ordered pixels an 8-bit per pixel
image is shown. The pixel indices are given by the values p0, p1, p2, ..., while the bit indices within
each individual pixel are given by the values b0, b1, b2, In Figure 5.2 (b) on the other hand, 24
pixels of a 1-bit per pixel image are shown - that is each pixel only uses a single bit (either 1 or 0) for
its value.

Finally the ordering of pixels values within the image array, known as the image major-order, needs
to be known. Major-order can be one of two possible choices: row-major-order or column-major-order.
Row-major-order means that pixels are ordered along rows, so that the top-left pixel at image row 0 and
column 0 appears first, followed by the pixel beside it at row 0 and column 1, and so on until we reach
the last pixel in row 0 at which point the next pixel which appears is from the next row at row 1 and
column 0. Most systems use row-major-order, however some systems, including the DMD 4500 device,
use column-major-order for its pixel ordering. In column-major-order pixels are ordered along columns
where we again begin with the pixel at image row 0 and column 0, but the next pixel in the image array
is the pixel below it at row 1 and column 0, followed by the pixel at row 2 and column 0, and so on
until we reach the last pixel in column 0, after which the pixel at row 0 and column 1 appears. An
example of row-major-order is shown in Figure 5.1 (a) and an example of column-major-order is shown
in Figure 5.1 (b). Here the numbers within the pixel squares indicate its pixel index within the image

Ajile Suite Software Users Guide
2025-02-12

31

Chapter 5. Images

width (columns)

h
e
ig

h
t (ro

w
s)

0 1 2 3 4 5 6 7

8 9 10 ...

width (columns)

h
e
ig

h
t (ro

w
s)

0

1

2

3

4

5

10

9

...

8

7

6

width (columns)

h
e
ig

h
t (ro

w
s)

(a) (c)(b)

0 1 2 3 4 5 6 7

8 9 10 ...

Figure 5.1: Image data formats showing (a) a single-channel, row-major-order image with 8×6 columns
by rows, (b) a single-channel, column-major-order image with 8×6 columns by rows, and (c) a three-
channel red, green, blue (RGB), row-major-order image with 8×6 columns by rows.

p0

b0b1b2b3b4b5b6b7

p1

b0b1b2b3b4b5b6b7

p2

b0b1b2b3b4b5b6b7

p0

b0

p1

b0

p2

b0

p3

b0

p4

b0

p5

b0

p6

b0

p7

b0

p8

b0

p9

b0

p10

b0

p11

b0

p12

b0

p13

b0

p14

b0

p15

b0

p16

b0

p17

b0

p18

b0

p19

b0

p20

b0

p21

b0

p22

b0

p23

b0

(a)

(b)

Figure 5.2: Image pixel bit depths with (a) three pixels from an image with an 8-bit per pixel bit depth,
and (b) 24 pixels from an image with a 1-bit per pixel bit depth.

array, which increments on a row by row basis for row-major-order, or on a column by column basis for
column-major-order.

A list of the image parameters for the current Ajile devices are shown in Table 5.2. Fortunately, for most
users the details of image formats can be mostly ignored because the Ajile SDK and GUI tools can take
care of all necessary image conversions to make sure that every device gets what is expected. These tools
and functions will be described in the remainder of this chapter.

5.3 Creating DMD Images

Once we know what types of components are in our project and we have a DMD component included in
the system, added images to our project is the first step in working with DMDs. There are two steps in

Device Width Height Bit Depth Number
Channels

Major Or-
der

DMD 4500 912 1140 1 1 Column
DMD 3000 608 684 1 1 Column
CMV 4000M 2048 2048 10 1 Row
CMV 4000C 1024 1024 10 3 Row
CMV 2000M 2048 1088 10 1 Row
CMV 2000C 1024 544 10 3 Row
CMV 300M 640 480 10 1 Row
CMV 300C 320 240 10 3 Row

Table 5.2: Native image properties used by Ajile devices.

Ajile Suite Software Users Guide
2025-02-12

32

Chapter 5. Images

creating a new image to add to a project. The first is the actual generating of the image data. Most users
will generate their images using their own drawing or graphics programs which are found on most PCs,
for example, ’Paint’ on Windows systems, or the open-source GIMP (GNU Image Manipulation Program,
http://www.gimp.org) available for Linux, Mac or Windows. Working with these image creation tools
is beyond the scope of this guide, users should refer to their specific documentation. Nearly all of these
programs however will have a variety of options for saving images to standard image file formats so that
they can be opened by other programs. This is then where the Ajile software begins - with image files
which have been created by external programs. It is strongly recommended to use a lossless image file
format, such as PNG or BMP, when saving images in external programs for importing into DMD devices
to avoid unwanted compression related image artifacts, however most standard file formats are supported
by the Ajile suite. Once we have a suitable image file which we want to import into our project for display
by a DMD device, the second step is to create an Image object which has the correct properties which
match the given device listed in Table 5.2. In addition, an Image ID must be set for the image so that
Frames can later refer to it.

5.3.1 Creating DMD Images in the GUI

To create DMD images in the GUI we use the Image Editor to open existing images from file, adjust their
display characteristics, then finally accept and add them into the current project. The Image Editor is
shown in Figure 5.3. To switch to the Image Editor, click on the Image Editor button on the left navition
bar (Figure 5.3, number 1) in the GUI. The first thing that needs to be done is to open an image from
file by clicking on the Open Image button (Figure 5.3, number 4). This brings up a file browser which
can be used to locate and open an image file of a common format (such as PNG, BMP, JPG, etc). Once
the image file has been opened it is displayed in the image viewer (Figure 5.3, number 3). By hovering
the mouse over the image viewer and using the mouse wheel the current image can be zoomed in and
out, and the view can be moved by holding the left mouse button and dragging.

If the currently open image is of the correct dimensions for the components in the system (i.e. see Table
5.2) then it can be accepted and added to the project immediately by clicking on the Accept Image
button (Figure 5.3, number 2). The Accept Image button uses the currently selected Output Image
Type and will add the current image to the project using the output image type. Available output image
types include 1-bit mono which is the native DMD format, as well as 8-bit grayscale and 24-bit RGB
colour. It is recommended to start with 1-bit mono images as the output image type while familiarizing
with the system since they are the most straightforward format for a DMD. This is because a DMD is
natively a 1-bit device, and therefore DMD images with higher bit depths must use multiple 1-bit images
that get modulated at very high speeds in order to achieve the effect of 8-bit or 24-bit images. This will
be described further in Chapter 6. Once the image has been accepted into the project, it is displayed in
the list of project images along with its Image ID and image name (Figure 5.3, number 11).

For opened images which are do not have the correct dimensions or other characteristics, the Image
Editor has basic tools to help with preparing images for proper display by a DMD. Since DMDs are 1-bit
binary image devices and many images which are encountered are 8-bit or 24-bit, there must be some
procedure for truncating the number of bits per pixel of the source image to make it suitable for a DMD.
The default behavior is to simply keep only the most significant bit of a multi-bit per pixel image as the
output image for the DMD, which for an 8-bit image is the same as applying a threshold with a value of
128. Other more intelligent thresholding functions are possible by using the Binraize Image box (Figure
5.3, number 6). The theshold type control can be a standard fixed value, which can be changed from the
default of 128 in the Value text box, or can use Otsu, Adaptive thresholding, or image dithering. The
selected threhold is applied by clicking on the Binarize button.

Resizing images to the correct dimensions to fit on the DMD array will also often be needed. Using the
Ajile GUI two options for resizing are possible: image cropping and image scaling. To crop an image,
the Crop Image box is used (Figure 5.3, number 7). The size of the crop selection can be set with the
Crop Selection drop down list. Once selected, a red rectangle showing the selected crop area will be
visble in the image viewer (Figure 5.3, number 3). The user can change the position of the cropped area
by clicking anywhere in the image viewer. Once a suitable crop selection is chosen, the Crop button
is clicked to apply the crop. To resize an image, the Scale Image box is used (Figure 5.3, number 8).

Ajile Suite Software Users Guide
2025-02-12

33

http://www.gimp.org

Chapter 5. Images

9

5 6 7 8

10

3

1

4

2

11

Figure 5.3: Screenshot of the Image Editor in the Ajile GUI. Images can be imported from standard
image files and prepared for display with this editor.

If Scale to Fit is chosen the width and height of the image will be stretched to fit in the DMD native
dimensions, while Keep Aspect Ratio will crop the image before scaling in order to maintain the aspect
ratio. The type of interpolation when resizing can be adjusted as well in the Scale Image box. When
the scaling settings have been set to their desired values, the Scale button is clicked to apply the scaling
function.

Inverting, also known as negating, an image is another operation which is often needed for images. This
can be done by clicking the Invert Image button (Figure 5.3, number 9). Finally, the currently loaded
image can be reloaded from its original file at any time by clicking on the Reload Image button (Figure
5.3, number 10) which will discard any modifications made to the image.

5.3.2 Creating DMD Images in the SDK

Initializing Image Objects

The first step in creating a usable DMD image is to create a new empty Image object and set its Image
ID to a positive non-zero integer between 1 and 65535 which will later be used by Frame objects to refer
to it. The Image ID can be set either using the Image constructor or can be set and read using the
Image.SetID() and Image.ID() functions. An example of creating two new images and setting their
Image IDs to 1 and 2 using both the Image constructor method and the Image.SetID() method is given
in Python in Listing 5.1 and in C++ in Listing 5.2.

create two new images with Image IDs 1 and 2
2 myImage1 = Image(1)

myImage2 = Image()
4 myImage2.SetID(2)

print ”myImage1.ID: ” + str(myImage1.ID())
6 print ”myImage2.ID: ” + str(myImage2.ID())

Listing 5.1: Python example of creating two new Image Objects.

Ajile Suite Software Users Guide
2025-02-12

34

Chapter 5. Images

void CreateImagesExample() {
2 // create two new images with Image IDs 1 and 2

Image myImage1 = Image(1);
4 Image myImage2 = Image();

myImage2.SetID(2);
6 cout << ”myImage1.ID: ” << myImage1.ID() << endl;

cout << ”myImage2.ID: ” << myImage2.ID() << endl;
8 }

Listing 5.2: C++ example of creating two new Image Objects.

Setting Image Data

Once the Image object has been created and the Image ID has been set, there are a number of ways to
set the image data which the Image object uses. The simplest way to set the image data is to use the
function Image.ReadFromFile() which takes as its first argument the filename of any valid image file
(such as a PNG or BMP). As discussed previously however, DMD images must have a specific format
in order to be displayed by the DMD device (Table 5.2). Fortunately however it is easy to convert any
image file into the required native format of a DMD. This is done by supplying a second argument to
Image.ReadFromFile() which is the hardware type of the device which will use the image. The effect
of passing in the device hardware type will be to automatically apply resizing and bit depth conversion
functions to the input image, similar to those found in the GUI, so that it fits properly on the DMD
array. Instead of using the device hardware type, it is also possible to manually specify any of the image
properties by passing them into an alternate version of the Image.ReadFromFile(). Users that need
this specialized functionality however can refer to the SDK reference manual for details. An example of
reading an image from file with the filename ’ajileLogo.png’ and converting the file to the format required
for a DMD 4500 device is given in Listing 5.3 in Python and in 5.4 with C++. If the input image filename
is valid, then after the Image.ReadFromFile() function call the image myImage will therefore have the
properties shown for the DMD 4500 in Table 5.2.

create an image with ID 1
2 myImage = Image(1)

read image file and convert it to DMD 4500 format
4 myImage.ReadFromFile(”ajileLogo.png”, DMD 4500 DEVICE TYPE)

print ”Image width: %d, height: %d, bitDepth: %d, channels: %d” \
6 % (myImage.Width(), myImage.Height(), myImage.BitDepth(), myImage.NumChannels())

Listing 5.3: Python example of reading an image from file into an Image object.

1 void ReadImageFromFileExample() {
// create an image with ID 1

3 Image myImage = Image(1);
// read image file and convert it to DMD 4500 format

5 myImage.ReadFromFile(”ajileLogo.png”, DMD 4500 DEVICE TYPE);
printf (”Image width: %d, height: %d, bitDepth: %d, channels: %d\n”, myImage.Width(), myImage.Height(),
myImage.BitDepth(), myImage.NumChannels());

7 }

Listing 5.4: C++ example of reading an image from file into an Image object.

While reading images from file and loading them into the project is the easiest way to work, there are
cases where this is not desirable, particularly when higher performance is needed during image streaming
and additional hard drive access should be avoided. The function Image.ReadFromMemory() has a
very similary interface to Image.ReadFromFile() except that it accepts a raw image pixel array which
resides in a memory location in RAM instead of a filename. The example in Listing 5.5 in Python
and in Listing 5.6 in C++ uses the OpenCV library (http://opencv.org/) and NumPy (Python only,
http://www.numpy.org/) to generate an 8-bit black background image with 100× 100 pixel wide white
rectangle at pixel coordinates (100, 100). The generated image is then loaded into our Image object
by using the Image.ReadFromMemory() function without using the file storage system. Just as in the
Image.ReadFromFile() example, the generated image is converted to the format required for a DMD
4500 by supplying DMD 4500 DEVICE TYPE.

Ajile Suite Software Users Guide
2025-02-12

35

http://opencv.org/
http://www.numpy.org/

Chapter 5. Images

import OpenCV and NumPy to generate an image programmatically
2 import cv2

import numpy
4 npImage = numpy.zeros(shape=(DMD IMAGE HEIGHT MAX, DMD IMAGE WIDTH MAX, 1), dtype=numpy.uint8)

cv2.rectangle(npImage, (100, 100), (200, 200), 255)
6 # create an image with ID 1

myImage = Image(1)
8 # load the NumPy image into the Image object and convert it to DMD 4500 format

myImage.ReadFromMemory(npImage, 8, ROW MAJOR ORDER, DMD 4500 DEVICE TYPE)
10 print ”Image width: %d, height: %d, bitDepth: %d, channels: %d” \

% (myImage.Width(), myImage.Height(), myImage.BitDepth(), myImage.NumChannels())

Listing 5.5: Python example of reading an image from memory created with the NumPy and OpenCV
libraries into an Image object.

1 #include ”dmd constants.h”
using namespace aj;

3 #include <opencv2/opencv.hpp>
void ReadImageFromMemoryExample() {

5 // import OpenCV to generate an image programmatically
cv ::Mat cvImage = cv::Mat::zeros(DMD IMAGE HEIGHT MAX, DMD IMAGE WIDTH MAX, CV 8U);

7 cv :: rectangle(cvImage, cv::Point(100, 100),
cv ::Point(200, 200), 255);

9 // create an image with ID 1
Image myImage = Image(1);

11 // load the NumPy image into the Image object and convert it to DMD 4500 format
myImage.ReadFromMemory(cvImage.data,cvImage.rows,cvImage.cols,

13 1, 8, ROW MAJOR ORDER,
DMD 4500 DEVICE TYPE);

15 printf (”Image width: %d, height: %d, bitDepth: %d, channels: %d\n”, myImage.Width(), myImage.Height(),
myImage.BitDepth(), myImage.NumChannels());

}

Listing 5.6: C++ example of reading an image from memory created with the NumPy and OpenCV
libraries into an Image object.

Adding and Reading Images to and from Projects

When an Image object has been created and its image data has been set we can finally add the image to
our project. This is done using the Project.AddImage() function and passing in our new image. The
image is adding to the project image store at the image storage location (in memory) given by the Image
ID. If the project already has an image with the same Image ID then the old image with the same ID
will be overwritten. To later access the images in a project, the function Image.FindImage() can be
used where a specific Image ID is passed in and a reference to the image with that ID is returned. An
example of adding an image to a project and getting it back again is given in Listing 5.7 in Python and
in Listing 5.8 in C++.

1 myProject = Project()
create an image with ID 123

3 myImage = Image(123)
add the image to our project

5 myProject.AddImage(myImage)
get the image from the project

7 foundImage, wasFound = myProject.FindImage(123)
print str (myImage.ID() == foundImage.ID() == myProject.Images()[123].ID())

Listing 5.7: Python example of adding an Image to a Project and getting it back again.

Ajile Suite Software Users Guide
2025-02-12

36

Chapter 5. Images

1 void AddImageToProjectExample(Project myProject) {
// create an image with ID 123

3 Image myImage = Image(123);
// add the image to our project

5 myProject.AddImage(myImage);
// get the image from the project

7 bool wasFound = false;
const Image& foundImage = myProject.FindImage(123, wasFound);

9 cout << (myImage.ID() == foundImage.ID()) << endl;
}

Listing 5.8: C++ example of adding an Image to a Project and getting it back again.

Ajile Suite Software Users Guide
2025-02-12

37

Chapter 6

Sequences

The Ajile suite uses Sequences of Frames to control the various available timing, lighting, and imaging
properties of Ajile devices on a frame by frame basis. Unlike many systems which must set all device
properties in advance of running and each of the frame has identical properties, the Ajile suite allows
describing complex sequences of frames where each frame can have unique properties independant of the
previous frame such as exposure/display time, lighting, region-of-interest (ROI), and so on.

Each Ajile project can have one or more Sequences. Each sequence has a unique sequence ID which is
used to refer to it, and one sequence which is composed of multiple frames gets run on a device at a time.
An overview of Sequences, which each contain multiple Sequence Items, which each contain multiple
Frames, was given in Section 2.4.

6.1 Sequence, Sequence Item and Frame Members

As was seen in the overview chapter in Section 2.4, Sequences can repeat one or more times, and contain
a list of Sequence Items. Sequence Items can also be repeated one or more times, and contain a list
of one or more Frames. Each individual Frame controls the display or capture parameters for a single
image.

6.1.1 Sequence Members

In addition to a unique ID, a repeat count and a list of Sequence Items, Sequences have a number of
other parameters which can be configured. The members of a Sequence are given in Table 6.1.

6.1.2 Sequence Item Members

Sequences have a list of Sequence Items which are run on a device in their listed order, and within each
Sequence Item is a list of Frames which can be repeated one or more times. The list of members of a
Sequence Item are given in Table 6.2.

6.1.3 Frame Members

Each Frame within a Sequence Item (which is within a Sequence) stores all imaging parameters for
an individual frame display or capture event by a device. With the exception of only a few global
project-level parameters, each frame can have complete control over each of the imaging parameters on
a frame-by-frame basis. These parameters include frame time, region of interest (ROI), lighting settings,
and many other which are listed in Table 6.3.

38

Chapter 6. Sequences

Name Description
ID A unique identifier to the project which allows each sequence to be

referenced and retrieved within the project sequences store. Sequence
IDs must be greater than zero (0) since the sequence with ID zero
refers to the special NULL (unassigned) sequence.

Name Optional human-readable name to describe the sequence. Can be left
empty if not needed.

Hardware Type The type of hardware device which the sequence is meant to run on,
for example a DMD 4500 device or a CMV 4000 device.

Sequence Type The sequence type, which can be either a ’preload’ sequence or a
’streaming’ sequence.

Repeat Count The number of times that the sequence will be repeated when it is run.
A repeat count of zero (0) is treated as a special value and means that
the sequence will repeat forever (infinitely) until a stop command is
sent to the device to stop the sequence.

Sequence Items A list of sequence items within the sequence which will be run one
after another in order of the list.

Out of Data Action For ’streaming’ sequence types only, this defines the behavior when
the sequence is running on a device but the device runs out of data
(i.e. more streaming sequence items).

Out of Data Item For ’streaming’ sequence types only, a sequence item which is displayed
when the device runs out of data.

Table 6.1: Description of members that are in a Sequence.

Name Description
Sequence ID The Sequence ID which this Sequence Item belongs to.
Repeat Count The number of times that the list of frames in the Sequence Item will

be repeated before moving on to the next Sequence Item. A repeat
count of zero (0) is treated as a special value and means that the
Sequence Item will repeat forever (infinitely) until a stop command
is sent to the device to stop the sequence, or ’Next Sequence Item’
command is sent to advance to the next Sequence Item.

Frames A list of frames within the sequence item which will be run one after
another in order of the list.

Start Sequence Item Control Input The sequence item can either start automatically after the previous
sequence item finished, or can wait for a control input trigger signal
if enabled. A trigger delay time can also be provided.

Sequence Item Started State Out-
put

A status signal indicating that a new sequence item has started. Can
be enabled or disabled and a delay time can be provided.

Sequence Item Ended State Out-
put

A status signal indicating that the current sequence item has ended.
Can be enabled or disabled and a delay time can be provided.

Table 6.2: Description of members that are in a Sequence Item.

Ajile Suite Software Users Guide
2025-02-12

39

Chapter 6. Sequences

Name Description
Sequence ID The Sequence ID which this Frame belongs to.
Image ID An Image ID which refers to an image within the project. For image

display devices such as a DMD, the Image ID determines which image
data will be displayed during this frame. For image capture devices
such as a camera, the Image ID refers to a storage location where the
captured image data will be stored. For ’streaming’ frames, the Image
ID may be zero (0) and thus ignored, and the included ’Streaming
Image’ will be used instead.

Frame Time The amount of time that the frame will be displayed (for image display
devices such as DMDs), or the length of the image exposure time (for
image capture devices such as cameras).

Region of Interest (ROI) A rectangular region of interest which describes a subset of the imaging
device area which will be used for the frame.

LED Settings A list of LED settings which describe the LED behavior for the
frame. LED settings include the LED current, pulse-width modu-
lation (PWM) duty cycle, LED on time, and LED delay time (after
the start of the frame).

Control Input Settings The list of control input settings (e.g. start/end frame/lighting, etc.)
for the frame. Each control input for the device can be enabled/dis-
abled and can have a delay time per frame.

State Output Settings The list of state output settings (e.g. frame/lighting started/ended,
etc.) for the frame. Each state output for the device can be en-
abled/disabled and can have a delay time per frame.

Imaging Parameters A list of extended imaging parameters for the frame. Each imaging
parameter is a key-value pair and is specific to the intended device
which will run the frame.

Streaming Image For ’streaming’ sequence types only, an entire ’streaming image’ can
be included inline with the frame. This image will be used once only
for the current frame to allow for streaming new image data along
with frames.

Image Pipeline Settings A list of image pipeline settings which can be customized per frame.
Image Pipeline Results A list of image pipeline results which were obtained after running the

frame on the device.

Table 6.3: Description of members that are in a Frame.

Ajile Suite Software Users Guide
2025-02-12

40

Chapter 6. Sequences

Sequence 1

Sequence Item 1

Sequence Item Repeat Count

Sequence Repeat Count

F
ra

m
e
 1

.1

F
ra

m
e
 1

.2

F
ra

m
e
 1

.3

F
ra

m
e
 1

.4

F
ra

m
e
 1

.5

F
ra

m
e
 1

.6

F
ra

m
e
 1

.7

F
ra

m
e
 1

.8

F
ra

m
e
 1

.9

F
ra

m
e
 1

.1
0

Start End

Figure 6.1: Sequence with a single sequence item which contains all frames (10 frames total in this
example.)

6.2 Sequence Structure

With the available hiearchy of Sequences which contain a list of Sequence Items which themselves contain
a list of Frames, a wide amount of flexibility is available to the user for constructing sequences.

One should be aware that the main use of Sequence Items is to be able to repeat sets of Frames within
a Sequence. In cases where repeating sets of frames is not needed users may wish to either have a single
Sequence Item which contains all frames for the sequences, or else one Sequence Item for each frame in
a Sequence. Here we show a few examples of typical ways in which sequences can be structured.

Example 1 (Single Sequence Item, Multiple Frames):

Probably the simplest way to construct a sequence is to simply have within it a single sequence item which
contains all frames for the sequence. This is useful in cases where repeating subsets of frames within a
sequence item is not needed. An example of a sequence with a single sequence item that contains all
frames is shown in Figure 6.1. When this example sequence is run on a device (e.g. on a DMD) the
first (and only) sequence item will be executed first. Within this sequence item, the first frame (labelled
Frame 1.1 in Figure 6.1) will be executed by the device. Once the frame time of Frame 1.1 has elapsed,
Frame 1.2 is executed, followed by Frame 1.3 and so on until Frame 1.10 is run. At the end of Frame
1.10, the sequence item is either repeated if the sequence item repeat count is greater than one for the
number of times specified by the repeat count, or else the sequence item is finished. Once all frames in
the sequence item have been run for the specified repeat count, the entire sequence may also be repeated
for the sequence repeat count in Sequence 1, in which case Sequence Item 1 begins again from the start
with Frame 1.1.

Example 2 (One Sequence Item per Frame):

Another way to construct a simple sequence of frames is to create one sequence item for each and every
frame, or in other words create several sequence items where each one has within it a single frame. An
example of this approach is given in Figure 6.2 which shows a sequence made up of six sequence items
and six frames, where each frame is within its own sequence item. The flow of this sequence would then
be for the device to run Frame 1.1 in Sequence Item 1, followed by Frame 2.1 in Sequence Item 2, then
Frame 3.1 in Sequence Item 3, and so on until Frame 6.1 in Sequence Item 6 is executed. If sequence item
repeat counts greater than one are given in the sequence items then of course the single frame within
the sequence item will be repeated for that count. As well, the entire sequence of sequence items can be
repeated for the sequence repeat count.

Example 3 (Multiple Sequence Items, Multiple Frames):

If greater flexibility and control is needed, one can construct sequences which have multiple sequence
items which each have multiple frames. In this way we can repeat subsets of frames within a sequence
using sequence items. An example of multiple sequence items which each have multiple frames is shown
in Figure 6.3. In this example, Sequence Item 1 is executed and Frames 1.1, 1.2 and 1.3 are run in order
and are repeated for the repeat count specified in Sequence Item 1. Following this, Frames 2.1 and 2.2

Ajile Suite Software Users Guide
2025-02-12

41

Chapter 6. Sequences

Sequence 1

Sequence
Item 1

Repeat

Sequence Repeat Count

F
ra

m
e
 1

.1

Start End

Sequence
Item 2

Repeat
F
ra

m
e
 2

.1

Sequence
Item 3

Repeat

F
ra

m
e
 3

.1

Sequence
Item 4

Repeat

F
ra

m
e
 4

.1

Sequence
Item 5

Repeat

F
ra

m
e
 5

.1

Sequence
Item 6

Repeat

F
ra

m
e
 6

.1

Figure 6.2: Sequence with a each Frame contained within its own Sequence Items (6 frames with 6
sequence items total in this example.)

Sequence 1

Sequence Item 1

Repeat Count

Sequence Repeat Count

F
ra

m
e
 1

.1

F
ra

m
e
 1

.2

F
ra

m
e
 1

.3

Start End

Sequence Item 2

Repeat Count

F
ra

m
e
 2

.1

F
ra

m
e
 2

.2

Sequence Item 3

Repeat Count

F
ra

m
e
 3

.1

F
ra

m
e
 3

.2

F
ra

m
e
 3

.3

F
ra

m
e
 3

.4

Figure 6.3: Sequence with multiple Sequence Items which have multiple Frames each.

in Sequence Item 2 are run for the number of times in the Sequence Item 2 repeat count, and finally
Frames 3.1, 3.2, 3.3 and 3.4 in Sequence Item 3 are run for the Sequence Item 3 repeat count. The entire
sequence may also repeat according the the Sequence 1 repeat count.

As will be described elsewhere in this manual, a common use of multiple sequence items which have
multiple frames can be found in sequences of composite images on a DMD device, such as grayscale or
colour images. Since a DMD is a binary device, in order to display images with greater bit depths such
as 24-bit colour or 8-bit grayscale images we create sequence items where each frame corresponds to
an individual bit plane of the complete image. For example, a sequence of 8-bit grayscale images will
be made up of sequence items where each sequence item defines to a complete 8-bit image and within
each sequence item there will be 8 frames which correspond to the 8 individual bit planes of the 8-bit
image.

6.3 Creating Sequences

After we have decided on the basic structure which our sequence will follow, we are ready to start
constructing the actual sequence which is composed of sequence items and frames. Creating sequences
involves creating and adding sequence items to the sequence and creating and adding frames to the
sequence items. The parameters of sequences, sequence items and frames can be easily modified using
the Ajile GUI sequence editor or with the Ajile SDK API. A sequence verifier tool is also included with
the Ajile software suite which can check over sequences and spot or even fix certain common errors which
can come up when creating new seqences.

Ajile Suite Software Users Guide
2025-02-12

42

Chapter 6. Sequences

3

1

2

4

5

8

10

9

11

12

13

14

7

6

Figure 6.4: Screenshot of the Sequence Editor in the Ajile GUI where sequences, sequence items and
frames can be created and edited.

6.3.1 Creating Sequences in the GUI

To create sequences in the GUI we need to open the Sequence Editor, add a new sequence, and set up its
initial sequence parameters. The Sequence Editor is shown in Figure 6.4. The Sequence Editor is opened
by clicking on the ’Sequence Editor’ button in the GUI navigation bar (Figure 6.4, number 1). Initially
the project will have no sequences. To create a new sequence, click on the ’New Sequence’ button in
the Sequence Editor (Figure 6.4, number 2). This causes the New Sequence dialog to appear, shown in
Figure 6.5, which prompts us to enter a sequence ID, sequence name, sequence repeat count, device type
that the sequence will run on, and the sequence type (’preload’ or ’streaming’). With the exception of
the sequence repeat count which can be changed later, these sequence parameters will be fixed for the
lifetime of the project so it is important that they are initialized properly. If a mistake is made when
entering these parameters the sequence will need to be deleted, by clicking the ’Delete Sequence’ button
beneath ’New Sequence’, and starting over with another new sequence.

After entering the initial sequence parameters and pressing OK in the New Sequence dialog a new
sequence is created and opened in the Sequence Editor. The sequence will automatically have a single
sequence item added to it, which will be displayed as the top-most row of the sequence tree (Figure 6.4,
number 5). The properties of the sequence are also displayed at the top of the Sequence Editor (Figure
6.4, number 10) and the sequence repeat count can be modified in the Repeat Count text box.

6.3.2 Creating Sequences in the SDK

The steps required for creating a new sequence and making use of it involves constructing a new Sequence
object, setting any of its parameters either using the Sequence constructor or the Sequence member

Ajile Suite Software Users Guide
2025-02-12

43

Chapter 6. Sequences

Figure 6.5: Screenshot of setting the initial Sequence parameters when creating a new sequence.

accessor functions (e.g. Sequence.SetID(), Sequence.SetRepeatCount(), etc.), then adding it to the
Project using Project.AddSequence(). An example of this is shown in Listing 6.1 in Python and in
Listing 6.2 in C++. A new Sequence object, mySequence, is initialized with a sequence ID of 1, with a
sequence name of “My Sequence”, a device type of the DMD 4500 device, and which is a ’preload’ type
sequence with a repeat count of 1. The sequence repeat count is later changed to 5, then the sequence
is added to the project.

myProject = Project()
2 # create a new sequence with ID 1

mySequence = Sequence(1, ”My Sequence”, DMD 4500 DEVICE TYPE, SEQ TYPE PRELOAD, 1)
4 print ”mySequence.ID: ” + str(mySequence.ID()) + ”, Repeat Count: ” + str(mySequence.RepeatCount())

change the repeat count
6 mySequence.SetRepeatCount(5);

print ”Repeat Counter after: ” + str(mySequence.RepeatCount())
8 # add the sequence to the project

myProject.AddSequence(mySequence)

Listing 6.1: Python example of creating a new Sequence and adding it to the Project.

1 void CreateSequenceExample(Project myProject) {
// create a new sequence with ID 1

3 Sequence mySequence(1, ”My Sequence”, DMD 4500 DEVICE TYPE,
SEQ TYPE PRELOAD, 1);

5 cout << ”mySequence.ID: ” << mySequence.ID()
<< ”, Repeat Count: ” << mySequence.RepeatCount() << endl;

7 // change the repeat count
mySequence.SetRepeatCount(5);

9 cout << ”Repeat Counter after: ” << mySequence.RepeatCount() << endl;
// add the sequence to the project

11 myProject.AddSequence(mySequence);
}

Listing 6.2: C++ example of creating a new Sequence and adding it to the Project.

6.4 Adding Sequence Items and Frames

Once one or more sequences have been created and added to the project, the next step is to add sequence
items and frames to the sequences to make them useful.

6.4.1 Adding Sequence Items and Frames in the GUI

The list of sequence items and frames for the currently selected sequence are displayed in the sequence
tree in the Sequence Editor (Figure 6.4, number 5). Note that the selected sequence can be changed
by clicking on the ’Selected Sequence’ drop down box (Figure 6.4, number 8). Recall that sequences,
sequence items and frames are stored in a tree-like hiearchy. This tree structure can be seen in the

Ajile Suite Software Users Guide
2025-02-12

44

Chapter 6. Sequences

sequence tree where the (invisible) root of the tree is the current sequence. Beneath the sequence is the
list of sequence items, shown as the blue items in the sequence tree (Figure 6.4, number 6), and beneath
each sequence item is a list of frames, shown as the green items (Figure 6.4, number 7).

There are two ways to add new sequence items and frames to the current sequence. One way is to
left-click on any sequence item or frame in the sequence tree to select it, then click the ’Add Sequence
Item’ (Figure 6.4, number 3) or ’Add Frame’ (Figure 6.4, number 4) buttons. This will insert a new
sequence item or a new frame into the current sequence after the currently selected sequence item or
frame. The second way to add sequence items or frames is to right-click on any sequence item or frame
in the sequence tree, which brings up a new pop-up menu next to the clicked item (Figure 6.4, number
9). This pop-up menu presents the same actions to add a frame or sequence item after the item which
was clicked on. When a new sequence item or frame has been added to the sequence it is shown in the
sequence tree and its parameters are populated with default parameters which can later be modified.
Many of these default parameters such as lighting and frame times can be adjusted in the Project Editor
to help speed up the process of creating sequences.

6.4.2 Adding Sequence Items and Frames in the SDK

There are several ways that sequence items and frames can be assembled and added to sequences/projects
using the Ajile SDK. The example in Listing 6.3 in Python and Listing 6.4 shows the most straightforward
and recommended way of adding sequence items and frames. After the sequence is created and added to
the Project, the recommended approach to is to essentially add the Sequence Items and Frames in the
order in which they are listed in the Sequence. In the example, a Sequence Item is created and added
to the project with Project.AddSequenceItem(). The function Project.AddSequenceItem() uses the
Sequence ID which is in the Sequence Item to deteremine which Sequence the Sequence Item is to be
added to, then the Sequence Item is added to the end of the sequence item list for that sequence. Once the
sequence item has been added, two Frames are then added in a similar manor using Project.AddFrame().
As with Project.AddSequenceItem(), Project.AddFrame() inspects the Sequence ID which is in the
Frame to determine which sequence to add the frame to. Once the sequence with that ID was found, the
Frame is then added to the end of the frame list of the last sequence item in the sequence.

While adding each new sequence item and frame to the end of the sequence is the simplest method,
finer control over where sequence items and frames are added is possible by optionally supplying a
sequence item ’index’ as a second argument to Project.AddSequenceItem(), or a sequence item index
and a frame ’index’ as additional arguments to Project.AddFrame(). These index arguments insert
the sequence item or frame after the item in the sequence item or frame list with the given index (note
that indices start at zero). See the Ajile SDK reference manual for further details of manipulating the
sequence item and frame lists.

myProject = Project()
2 # Create sequence and add it to the project

sequenceID = 1
4 sequence = Sequence(sequenceID)

myProject.AddSequence(sequence)
6 # create sequence item and add it to the project

seqItem = SequenceItem(sequenceID, 1)
8 myProject.AddSequenceItem(seqItem)

create two frames and add them to the project
10 # (added to the last sequence item in the sequence)

frame1 = Frame(sequenceID)
12 myProject.AddFrame(frame1)

frame2 = Frame(sequenceID)
14 myProject.AddFrame(frame2)

get the sequence from the project
16 foundSequence, wasFound = myProject.FindSequence(sequenceID)

print ”Number of Sequence Items: ” + str(len(foundSequence.SequenceItems()))
18 print ”Number of Frames: ” + str(len(foundSequence.SequenceItems()[0].Frames()))

Listing 6.3: Python example of creating a Sequence with one Sequence Item and two Frames and adding
them to the Project.

Ajile Suite Software Users Guide
2025-02-12

45

Chapter 6. Sequences

void AddSequenceItemsFramesExample(Project myProject) {
2 // Create sequence and add it to the project

int sequenceID = 1;
4 Sequence sequence(sequenceID);

myProject.AddSequence(sequence);
6 // create sequence item and add it to the project

SequenceItem seqItem(sequenceID, 1);
8 myProject.AddSequenceItem(seqItem);

// create two frames and add them to the project
10 // (added to the last sequence item in the sequence)

Frame frame1(sequenceID);
12 myProject.AddFrame(frame1);

Frame frame2(sequenceID);
14 myProject.AddFrame(frame2);

// get the sequence from the project
16 bool wasFound = false;

const Sequence& foundSequence = myProject.FindSequence(sequenceID, wasFound);
18 cout << ”Number of Sequence Items: ”

<< foundSequence.SequenceItems().size() << endl;
20 cout << ”Number of Frames: ”

<< foundSequence.SequenceItems()[0].Frames().size() << endl;
22 }

Listing 6.4: C++ example of creating a Sequence with one Sequence Item and two Frames and adding
them to the Project.

6.5 Modifying Sequence Item and Frame Parameters

Most sequences will require some amount of modification of the sequence item and/or frame parameters
from the defaults. In this section we look at how to change the most fundamental sequence item and frame
parameters such as repeat counts, image selection, frame time. Changing more advanced frame-by-frame
parameters such as lighting and trigger settings will be covered seperately in their own chapters.

6.5.1 Modifying Sequence Item and Frame Parameters in the GUI

Once one or more sequence items and frames are added to the sequence and appear in the sequence tree
of the Sequence Editor, we can modify most of the sequence item and frame parameters by clicking on
the value in the sequence tree and typing in a new value. Each of the parameter names are listed in the
sequence tree column headers (Figure 6.4, number 11).

Sequence Item Repeat Count

The sequence item repeat count specifies the number of times that frames in the given sequence item will
be repeated. Click on the cell in the sequence item row under the repeat count column to enter a valid
input number in the range from 1 to 232−1. A special repeat count of 0 indicates that the sequence item
will be repeated forever (i.e. infinitely) until the sequence is stopped or a command is sent to explicitly
advance to the next sequence item. A ’Frame Time’ is also displayed for the sequence item. This frame
time is not editable by the user, but is for display purposes only and reports the total additive frame time
of all frames within the sequence item, times the sequence item repeat count. For example, a sequence
item with a repeat count of 5 which contains 3 frames of 100 ms each will have a ’Frame Time’ displayed
as 5 repeats × 3 frames × 100 ms = 500 ms.

Images

Each frame refers to an image by its unique image ID in the project. There are two ways to set the
image ID of a given frame. The first is to click on the cell in the frame row under the Image ID column
and explicitly enter in a valid Image ID number which was previously added in the Image Editor. An
error message will appear if the entered Image ID does not refer to a valid image in the project. The
second way to set the image in the frame is to right-click the frame row in the sequence tree to bring up
the pop-up menu which we have already seen (Figure 6.4, number 9) and clicking on the “Add/Change

Ajile Suite Software Users Guide
2025-02-12

46

Chapter 6. Sequences

Figure 6.6: Dialog which allows setting the image for the frame.

Image” item in the menu. This brings up a Select Image Dialog, seen in Figure 6.6, which shows all valid
images which can be used for the given frame in the sequence. Left clicking on the chosen image and
clicking OK or double clicking the image will change the selected image for the frame.

It is also possible to set an image for a sequence item for the case of composite images such as 24-bit
RGB or 8-bit grayscale image which are composed of 24 or 8 individual 1-bit frames. Setting a composite
image for a sequence item (by clicking on “Add/Change Image” in the pop-up after right-clicking on the
sequence item) results in 24 (or 8) frames being automatically created and added to the sequence item
for each of the corresponding bitplanes of the composite image. The Image IDs of each frame along with
the frame timing and lighting parameters are also automatically set to produce a sensible RGB colour
(or grayscale) image. The individual parameters of each frame can of course still be modified to enable
custom colour or grayscale lookup tables, which users can explore further.

Frame Time

Setting the frame time of an individual frame is accomplished by clicking on the cell in the frame row
under the Frame Time column and entering a valid frame time. Valid frame times, particularly minimum
values, are device specific and may depend on other imaging parameters as the selected region of interest.
Note that the time units of the frame time depends on the GUI preference, which can be changed to
suit the needs of the sequence timescale by opening the top menu item under Tools ⇒ Preferences.
Milliseconds and microseconds are typical time units, however the lowest level of raw clock ticks (where
each count corresponds to 10 nanoseconds) gives the finest granularity of precision if needed. As will be
discussed in Chapter 7, it is important to also consider the On Time of the lighting to make sure that it

Ajile Suite Software Users Guide
2025-02-12

47

Chapter 6. Sequences

is changed along with the frame time as needed.

6.5.2 Modifying Sequence Item and Frame Parameters in the SDK

Sequence item and frame parameters must be set before they are added to the project in the SDK. If
parameters need to be modified after being added then the modified sequence items or frames must be
removed and re-added to the project with the new parameters.

Any sequence item or frame parameters which were listed in Table 6.2 and Table 6.3 can be set either
by defining them initially in their constructors, or by using the accessor functions to modify them (e.g.
SetRepeatCount, SetFrameTime, etc.) For full details of the constructor parameters and the list of
accessor functions for the Sequence Item and Frame objects one can refer to the Ajile SDK reference
manual.

6.6 Verifying Sequences

Users have a great deal of flexibility when creating sequences when using the Ajile software suite. While
this flexibility allows a great deal of power for solving the widest possible range of problems, it can
also potentially make it tricky for beginning users ensure that everything is set up correctly. To help
with identifying and solving any potential issues with sequences, the Ajile suite has included with it a
sequence verifier which checks over created sequences and can even automatically fix certain issues.
The sequence verifier should be run on a sequence against a target component once it has been finished
by the user. This exact same sequence verifier which is available to the user in the GUI/SDK is in
fact also running on all Ajile devices, and so even if one forgoes running the verifier it will still be run
internally by the target device to ensure that any sequence being run on it will not cause problems for
the device.

6.6.1 Verifying Sequences in the GUI

Fortunately for the most part when creating sequences in the Ajile GUI, most potential sequence problems
are prevented from occuring right up front while inputting in the various parameters. The sequence
verifier is however available to spot any remaining issues. To run the sequence verifier in the GUI, first
select the sequence to be verified then click on the “Verify Sequence” button in the Sequence Editor
which is in the “Actions” set of buttons. This presents the user with the Sequence Verifier dialog box,
shown in Figure 6.7. By clicking on the “Verify Only” button, the selected sequence is verified against
the target component and a list of any errors or warnings are printed in the dialog. Warnings are printed
in orange and are preceded by (WW) and errors are printed in red and are preceded by (EE). Warning
are non-critical and can be fixed by clicking on the “Verify & Fix” button. Any unfixed warnings will
be automatically fixed when they are run on the target device regardless. Errors on the other hand are
deemed critical and cannot be fixed automatically. The example in Figure 6.7 shows one critical error -
one of the frames in the sequence does not have a valid Image ID assigned, and so the sequence will not
be able to run. One will need to manually fix any errors found in the verifier - the fix in this example
would be to select a valid image for the frame in question.

6.6.2 Verifying Sequences in the SDK

The sequence verifier is most useful when used within the SDK environment since users are fairly free
to create sequences however they want up front without limitations. As already mentioned, the same
sequence verifier is used by the GUI, SDK and Ajile devices. As in the GUI, the SDK sequence verifier
also has the ability to either only verify a sequence, or to verify and fix a sequence (thus modifying its
contents). Verifying a sequence is accomplished with a Project function Project.VerifySequence()

which takes as arguments a sequence ID which is in the project, a component ID (i.e. index) which is in
the project, a flag which indicates whether or not the fix the sequence and finally a string which receives
the human readable error output from the verifier. The example in Listing 6.5 in Python and in Listing
6.6 in C++ shows how to use the sequence verifier, where it doesn’t modify the sequence in the first
call to Project.VerifySequence() and fixes (and thus modifies) the sequence in the second call. Note

Ajile Suite Software Users Guide
2025-02-12

48

Chapter 6. Sequences

Figure 6.7: Screenshot of the Sequence Verifier dialog.

Ajile Suite Software Users Guide
2025-02-12

49

Chapter 6. Sequences

that the Python version of the sequence verifier call is actually Project.VerifySequenceStr() instead
of Project.VerifySequence(), but it behaves identically to the C++ version. Based on the sequence
verifier output, users can either print and analyze the verifier output and manually fix any problems, use
the verifier to fix warnings automatically, and/or develop custom functions to fix any remaining sequence
errors.

1 # verify the sequence only (without fixing it)
errorString = myProject.VerifySequenceStr(sequenceID, dmdComponentID, False)

3 print ” Verification complete without fix, output is : ” + errorString
verify the sequence and fix it

5 errorString = myProject.VerifySequenceStr(sequenceID, dmdComponentID, True)
print ” Verification complete with fix, output is : ” + errorString

Listing 6.5: Python example of verifying a Sequence in a Project against a DMD target component.

1 void VerifySequenceExample(Project myProject, u16 sequenceID, u8 dmdComponentID) {
// verify the sequence only (without fixing it)

3 string errorString = ””;
ErrorType e ret = myProject.VerifySequence(sequenceID, dmdComponentID, false, &errorString);

5 cout << ”Verification complete without fix, error code is ”
<< ret << ” output is: ” << endl << errorString;

7 // verify the sequence and fix it
errorString . clear () ;

9 ret = myProject.VerifySequence(sequenceID, dmdComponentID, true, &errorString);
cout << ”Verification complete with fix, error code is ”

11 << ret << ” output is: ” << endl << errorString;
}

Listing 6.6: C++ example of verifying a Sequence in a Project against a DMD target component.

Ajile Suite Software Users Guide
2025-02-12

50

Chapter 7

Lighting

7.1 Lighting Introduction

7.1.1 Lighting Controller Overview

A high performance lighting controller is available with the Ajile suite. This multi-channel lighting
controller can be combined with other devices, such as the DMD controller or camera controller, to
provide precisely controlled lighting on a frame-by-frame basis.

The primary use of the lighting controller is as a 3 channel LED controller for a DMD projector optical
engine. For example, the standard Ajile DMD 4500 projector has in it three high powered OSRAM LEDs
in each the red, green and blue.

The lighting controller is however not limited to just DMD lighting control. Ajile cameras can also have
a lighting controller attached to provide, for example, frame-by-frame multispectral scene lighting with
multiple LED channels. In addition, multiple lighting controllers can be daisy chained together so that
more than three LED channels can be controlled from a single master device (e.g. a DMD controller
or camera controller). The standard offering allows for 2 lighting controllers to be chained together to
provide 6 LED channels for one device (3 channels per board), but for specific applications up to 8
lighting controllers may be used together to provide 24 LED channels if needed.

Maximum output current and voltage ratings per channel for the lighting controller can be found in the
specific data sheets. The current implementation allows for around 85 W of electrical output across 3
channels. Of course, with such high powered operation of LEDs high temperatures can also be an issue,
both with the LEDs themselves or with the actual lighting controller board. Proper heat sinking and
air flow is thus needed to allow operation at maximum power. Furthermore, to ensure the safety of
the attached LEDs and the lighting controller electronics, the controller is equipped with an on-board
thermocouple and has inputs for 3 additional thermocouples, one per lighting channel, which can monitor
temperatures. The thermocouple outputs can be monitored by the attached master device and individual
LEDs or the entire lighting controller can be shut down when certain critical temperatures are reached
to protect the hardware.

7.1.2 Lighting Control Software Overview

There are two main places where users interact with lighting in the Ajile software suite. The first is the
list of LED properties which are contained in the components within a project. The second are the LED
settings in each individual frame in the sequences within a project.

The list of LED properties in each component first of all tells us how many LEDs are in available in
the component by looking at the length of the LED properties list. Each individual LED property then
tells us about the minimum, maximum and default LED settings such as the LED currents, as well as
descriptive text strings which identify the LED types and colours/wavelengths.

51

Chapter 7. Lighting

Name Description
Device Name A human readable text string which describes the specific LED part.

This typically relates to the manufacturer part number of the device,
for example OSRAM LE-A-Q7WP defines the OSRAM Red LED
which is found in standard Ajile projector units.

Colour A human readable text string which describes the colour and/or centre
wavelength of the LED. For example, Red 617 defines a red LED with
centre wavelength at 617 nm (e.g. the OSRAM LE-A-Q7WP).

Maximum Settings The maximum drive settings for the LED. This is stored as an LED
Setting (and therefore holds the maximum current, PWM, on time
and delay for the LED).

Minimum Settings The minimum drive settings for the LED. This is stored as an LED
Setting. Frames that have LED Settings which are outside of the
range of the maximum and minimum settings are not allowed, and are
automatically clamped to the minimum or maximum settings when
evaluated by the sequence verifier.

Default Settings The default drive settings for the LED. This is stored as an LED Set-
ting. Frames that do not specify all LED Settings will automatically
be given the default settings when evaluated by the sequence verifier.

Warning Temperature A temperature, in degrees Celcius, which is still safe for the LED
device but should ideally not be exceeded for long periods of time.

Critical Temperature A temperature, in degrees Celcius, which should never be exceeded by
the LED device. The controlling device may automatically shut down
the LED to protect it if this temperature is exceeded since it usually
indicates a hardware problem with the electronics or the system heat
conduction.

Table 7.1: Description of members that are in an LED Property.

The list of LED settings in each frame indicate the LED settings which will be used for that specific
frame. This includes the per-channel LED current, LED pulse-width modulation (PWM) percentage,
LED on time and LED delay time. If any or all of the LED settings are not included with the frame
then the default LED settings from the component will be used.

7.2 Lighting Members

Within a project, Frames have a list of LED Settings while Components have a list of LED Properties
(which in turn have LED Settings for the LED minimum, maximum and default values). This structure
was previously seen in Figure 2.1.

7.2.1 LED Property Members

LED Properties in components store the minimum, maximum and default LED settings along with, a
description of the LEDs, and warning/critical temperatures which will be monitored to protect the LEDs.
The list of members of an LED Property are given in Table 7.1.

7.2.2 LED Setting Members

A list of LED Settings are stored in each Frame to specify the per-channel LED current, PWM, on time,
and delay time for the frame. LED Settings are also used by the LED Properties to store the minimum,
maximum and default LED Settings per LED. The list of members of an LED Setting are given in Table
7.2.

Ajile Suite Software Users Guide
2025-02-12

52

Chapter 7. Lighting

Name Description
Current The current of the LED, which controls the amount of electrical power

delivered to the LED. Internally this value is specified in raw counts
which will be used by LED controller to control the LED channel.
However, convenience functions are provided to specify current in
amps (A) or milliamps (mA) and the conversion to raw counts is
done internally be the Ajile SDK.

Pulse-Width Modulation (PWM) The PWM percentage of the LED. A default PWM period is used by
the lighting controller, and so the PWM value specifies the duty cycle
within that PWM period which the LED is on for. Internally this is
specified as an 8-bit value with 0 being a PWM of 0%, 255 a PWM
of 100% and 127 a PWM of ∼ 50%. However, convenience functions
are available to specify PWM values as percentages with conversion
to raw PWM values done internally by the Ajile SDK.

On Time The amount of time during the frame that the LED will be active for.
LED on time can be less than or equal to the frame time. On times
longer than the frame time will be clamped to the frame time by the
sequence verifier when run.

Delay Time A delay time, which is measured from the start of the frame, after
which the LED will be activated.

Table 7.2: Description of members that are in an LED Setting.

7.3 LED Settings Detailed Description

Since there are a number of different LED Setting parameters that be changed per frame, here we take
a closer look at how their values change the effect of the LEDs by way of example.

The example in Figure 7.1 shows the behavior of three LEDs, red, green and blue, over the time period
of two frames in a sequence. As we saw in Chapter 6, Frames have a frame time which defines how long
the frame is exposed for, and has a list of LED settings, one for each channel. In the example, each of
the three channels have different LED Settings including LED current, PWM percentage, LED on time,
and LED delay time, and these LED Settings are varied between the two frames shown.

LED Current:

The LED current controls the brightness of the LED for the duration of the frame. The Ajile lighting
controller has high speed control of LED current so that new current settings for a frame (which may
be vastly different from the previous frame) take effect almost immediately. In Figure 7.1, we see that
the red LED current remains a constant 1.0 over both frames. The green LED has a current value of 1.5
in the first frame while in the second frame its current drops to half its value to 0.75. We can observe
this drop in current represented as a drop in green LED output amplitude (which will correspond to
brightness of the actual phsysical LED). Similarly, the blue LED current setting drops from 1.25 to 1.0
over the two frames.

Note that the current in this example is of arbitrary units but is eventually mapped to amperes (A).
Time units are also arbirary in Figure 7.1, but can easily be mapped to seconds, milliseconds, etc.

LED PWM:

The LED PWM is expressed as a percentage of the LED on time over a fixed repeating PWM period.
In Figure 7.1 we see that the PWM period is 1

8th
the frame time of the first frame since there are 8

individual PWM periods seen for the red LED which has a PWM of 50%, and its on time is for the full
frame time. Frame 1 has a frame time of 1000 time units, therefore the PWM period in this example
is 1000

8 = 125 time units. With a PWM percentage of 50% for the red LED in Frame 1, we therefore
see that for half of each PWM period the red LED is emitting light, and for the other half of each 125
time unit length PWM period the LED is not outputting light. In Frame 2, the red LED has a PWM of
100%, meaning that the red LED will not be pulse-width modulated and so is on for the entire duration

Ajile Suite Software Users Guide
2025-02-12

53

Chapter 7. Lighting

Inter-
Frame
Time

Frame 1 Started

Red LED: Current=1.0, PWM=50%, On Time=1000, Delay=0
Green LED: Current=1.5, PWM=25%, On Time=500, Delay=0
Blue LED: Current=1.25, PWM=100%, On Time=750, Delay=250

Frame Settings: Frame Time=1000 Inter-
Frame
Time

Frame 2 Started

Red LED: Current=1.0, PWM=100%, On Time=1000, Delay=500
Green LED: Current=0.75, PWM=25%, On Time=500, Delay=0
Blue LED: Current=1.0, PWM=80%, On Time=500, Delay=250

Frame Settings: Frame Time=750 Inter-
Frame
Time

Frame
State

Red LED
Output

Green LED
Output

Blue LED
Output

Figure 7.1: 3-channel LED output over two frames, with different LED Settings per channel and per
frame.

of each PWM period. In the green LED channel we have a PWM of 25% for both frames, therefore the
green LED is emitting light for a quarter of each 125 time unit PWM period. The blue LED on the
other hand again has a 100% PWM for Frame 1 and so is continuously on, while it has a PWM of 80%
for Frame 2 and therefore is mostly on during each PWM period.

In this example the PWM period is arbitrary. In actual hardware the PWM period is typically 1
100kHz =

10 microseconds. Note that this 10 µs PWM period works well for frame times which are of a com-
paritively much longer timescale than the PWM period (e.g. 1 ms or longer). For very short frame
times which are of microsecond time scales (which are completely possible with Ajile devices), it is highly
recommended to not use the PWM setting and to always leave it at 100%. Instead, the LED current,
LED on time, and delay time can be used to control the LED light output in order to obtain predictable
results at these time scales.

LED On Time:

LED on time is the amount of time that the LED will be left on from the time that it is first enabled
during a frame. When an LED delay setting is not used (i.e. the delay is zero), then the LED will be
turned on immediately at the start of the frame. In Figure 7.1, a short inter-frame time is shown in the
frame state timeline to indicate the gap in between adjacent frames. After this inter-frame time, the
frame begins. When no delay time is set, the LED is turned on immediately at this frame begin event.
From the initial turning on event of the LED, the LED will remain enabled for the LED on time. In the
example, the red LED on time is set to the frame time of 1000 time units for Frame 1 and so is on for
the entire frame. The green LED however has on on time of 500 time units for Frame 1 which is half
the total frame time, therefore the green LED is enabled for only the first half of the frame. The blue
LED has an on time of 750 units for Frame 1 and so is on for 3/4 of the frame time. The blue LED also
has a delay time set and so is not immediately enabled when the frame starts; delays will be discussed
next.

The given example on LED on times and delays holds for frames which are based on internal frame
timing. It is also possible to use external trigger signals to control the state of the LEDs, which is
described in detail in Chapter 8.

LED Delay:

The last LED Setting which is available under user control is the LED delay time. The LED delay allows
us to specify the amount of time after the lighting start event when the LEDs are meant to be enabled.
When using internal frame timing (i.e. not using triggers to control the lighting) this lighting start event
is the start of the frame. The LED delay therefore causes the LED to be enabled after the start of the
frame, at the time specified by the delay value. When external triggering is used, the LED delay allows
for the LEDs to be enabled after a delay time has elapsed from the time the external trigger event is

Ajile Suite Software Users Guide
2025-02-12

54

Chapter 7. Lighting

observed (which is described further in Chapter 8).

In the examle of Figure 7.1, the red and green LEDs have the delays set to the default of zero for Frame
1, and therefore are enabled immediately at the start of the frame. The blue LED on the other hand has
a delay of 250 time units and so is enabled 250 units after the start of the frame. For Frame 2, the green
and blue LED channels use the same delay values of 0 and 250 time units, respectively. The red channel
on Frame 2 now has a delay of 500 time units specified and so it is enabled 500 after the beginning of
the frame.

Note that in Figure 7.1, the red LED settings specifiy a delay of 500 and an on time of 1000, which
would mean that the LED would actually be on for longer than the total frame time of 750 time units.
This is not allowed by sequences. As a rule the lighting for each frame is independant of the last. The
sequence verifier therefore will detect such cases and will clamp the total LED time, defined as the total
on time + delay time, to be the frame time. Also it should be noted that delay times greater than the
frame time result in the LED never being enabled for the frame. These cases will be flagged as warnings
by the sequence verifier.

7.4 Configuring Component LED Properties

The starting point of working with LED settings in Ajile projects is with the list of LED Properties
which are in each component. These LED properties define the overall types of LEDs and their charac-
teristics.

7.4.1 Configuring LED Properties in the GUI

Viewing LED Properties which are in the project components and configuring their default values is done
via the Ajile GUI Project Editor. The Project Editor was introduced in Chapter 3, which we show in
greater detail in Figure 7.2. With the Project Editor open, we first need to select the component which
has the LED properties that we need to view or edit (Figure 7.2, number 1). Provided that the selected
component actually has LEDs, the LED table will be populated with the current LED Properties for
the component. In Figure 7.2, the DMD 4500 component is selected and in this case has three LEDs
associated with it. The LED colours and device descriptions can be seen in the LED table (Figure 7.2,
number 5), as well as the LED minimum and maximum current values (Figure 7.2, number 6). The LED
colour, device, minimum and maximum are read-only since they are constraints derived directly from
the component and device. The default LED settings are also in the LED table (Figure 7.2, number 7),
which include the default current, PWM, on time and delay values. The default values can be edited by
the user. These default values will be used by the Ajile GUI when creating frames in the sequence editor
to automatically populate newly created frames with the default LED settings.

Note that the units displayed in the GUI for currents and times depend on the chosen GUI preference.
To change the GUI preferences, select ’Preferences’ under the ’Tools’ menu (Figure 7.2, number 4). This
presents a Preferences dialog (Figure 7.2, number 2) from which the user can choose the desired time
and current units to best suit the project needs.

7.4.2 Configuring LED Properties in the SDK

A list of LED Property objects is contained in each Component in the Project. The LED Properties of
an individual Component can be accessed by Component.LedProperties(). From this returned list we
can see how many LEDs belong to the component from the list size, and see each device description,
colour, and minimum/maximum/default settings. As with the GUI, most of the LED Properties of
a component are read only, with the exception being the default LED Settings. To easily update the
default LED Settings, the project function Project.SetDefaultLedSetting() is available. The function
Project.SetDefaultLedSetting() takes as arguments the component index where the LED resides and
the index of the individual LED, as well as an LedSetting object which contains the new default LED
values.

An example of configuring LED Properties is given in Listing 7.1 in Python and in Listing 7.2 in C++.

Ajile Suite Software Users Guide
2025-02-12

55

Chapter 7. Lighting

5 6 7

3

1

2

4

Figure 7.2: Screenshot of the Project Editor, which allows for component settings including LED and
Trigger settings to be viewed and configured.

The list of LED Properties are iterated through and the descriptions and colours are output. Three new
LEDSetting objects are then created to be used as default values for the red, green and blue LED channels.
The values of the defaults are identical to those seen in the example of Figure 7.1. Note that the current
units (the first argument of the constructor) is specified in milliamps, and the on time and delay times are
given in milliseconds. Internally, all times are stored in 10 ns units, therefore a helper function FromMSec

is used to easily convert from ms values to internal 10·ns units. Once the default LED Settings have been
created, the defaults of the component can be updated using Project.SetDefaultLedSetting() for each
of the three LED Settings. Finally, the updated default settings of the component are output. Note that
the LED time accessor functions have the suffix MSec(), for example LedSetting.OnTimeMSec(). This
convenience function performs the conversion of internal 10·ns units to ms. Other conversion functions
to/from ns, µs, and seconds are also available.

1 # output the list of LED colours/names for the component
for ledProperty in myProject.Components()[componentIndex].LedProperties():

3 print ”LED Colour: ” + ledProperty.Colour() + ”, Device: ” + ledProperty.DeviceName()
create new default LED settings

5 newDefaultRed = LedSetting(1000, 50, FromMSec(50), 0)
newDefaultGreen = LedSetting(1500, 25, FromMSec(50), 0)

7 newDefaultBlue = LedSetting(1250, 100, FromMSec(75), FromMSec(25))
update the default LED settings in the project

9 myProject.SetDefaultLedSetting(componentIndex, 0, newDefaultRed)
myProject.SetDefaultLedSetting(componentIndex, 1, newDefaultGreen)

11 myProject.SetDefaultLedSetting(componentIndex, 2, newDefaultBlue)
output the LED defaults

13 for ledProperty in myProject.Components()[componentIndex].LedProperties():
defaultSetting = ledProperty.DefaultSettings()

15 print ”Current: ” + str(defaultSetting .Current())
print ”PWM: ” + str(defaultSetting.PWM())

17 print ”On Time: ” + str(defaultSetting.OnTimeMSec())
print ”Delay: ” + str(defaultSetting .DelayMSec())

Listing 7.1: Python example of reading and setting LED Properties in the Project.

Ajile Suite Software Users Guide
2025-02-12

56

Chapter 7. Lighting

1 void LEDPropertiesExample(Project myProject, u8 componentIndex) {
// output the list of LED colours/names for the component

3 for (u8 i=0; i<myProject.Components()[componentIndex].LedProperties().size(); i++) {
const LedProperty& ledProperty =

5 myProject.Components()[componentIndex].LedProperties()[i];
cout << ”LED Colour: ” << ledProperty.Color()

7 << ”, Device: ” << ledProperty.DeviceName() << endl;
}

9 // create new default LED settings
LedSetting newDefaultRed(1000, 50, FromMSec(50), 0);

11 LedSetting newDefaultGreen(1500, 25, FromMSec(50), 0);
LedSetting newDefaultBlue(1250, 100, FromMSec(75), FromMSec(25));

13 // update the default LED settings in the project
myProject.SetDefaultLedSetting(componentIndex, 0, newDefaultRed);

15 myProject.SetDefaultLedSetting(componentIndex, 1, newDefaultGreen);
myProject.SetDefaultLedSetting(componentIndex, 2, newDefaultBlue);

17 // output the LED defaults
for (u8 i=0; i<myProject.Components()[componentIndex].LedProperties().size(); i++) {

19 const LedSetting& defaultSetting =
myProject.Components()[componentIndex].LedProperties()[i].DefaultSettings();

21 cout << ”Current: ” << defaultSetting.Current() << endl
<< ”PWM: ” << defaultSetting.PWM() << endl

23 << ”On Time: ” << defaultSetting.OnTimeMSec() << endl
<< ”Delay: ” << defaultSetting.DelayMSec() << endl;

25 }
}

Listing 7.2: C++ example of reading and setting LED Properties in the Project.

7.5 Configuring LED Settings per Frame

A unique feature of the Ajile suite is the ability to control any LED setting on a frame-by-frame basis.
Each Frame has a list of LED Settings, one for each physical LED, which can be used to set the LED
settings which will be used for that individual frame.

7.5.1 Configuring LED Settings in the GUI

Configuring the per frame LED settings in the GUI is accomplished using the Sequence Editor which
was introduced in Chapter 6. The LED Settings for an individual frame can be found in the sequence
tree beneath the given frame (Figure 6.4, number 14). When new frames are created in the Sequence
Editor they are automatically populated with a list of LED Settings using the default settings of the
Target Component (Figure 6.4, number 10). These default LED Settings for the Frame could of course
be left alone, or they could be customized per frame by clicking on the LED setting to be modified and
inputting a new value. The units for current and time in the Sequence Editor follow the units selected in
the GUI preferences. It is also possible to collapse or expand the LED settings for frames in the sequence
tree by clicking on the arrow icon next to the frame.

7.5.2 Configuring LED Settings in the SDK

We have already seen LEDSetting objects when configuring the LED defaults for a component. Config-
uring LED Settings for a frame is similar. We create new LED Settings, then add or update them to the
frame which they belong to.

Unlike in the GUI, Frames created in the SDK do not automatically have their list of LED Settings
initialized to the defaults in the target component since frames do not explicity know which component
they are designed for when they are created. However, frames with unspecified or missing LED Settings
have their LEDs defaulted to the default LED settings of the target component by the sequence verifier
when they are run on the component.

The recommended way to configure the LED Settings for a frame is to first create a list of LED Settings
by making a copy of the default LED Settings from the component, then modify the copied LED settings
to the customized values per frame. This way we can be sure that the list of LED Settings is created

Ajile Suite Software Users Guide
2025-02-12

57

Chapter 7. Lighting

properly for the target component and we only need to alter the values of interest. Once the LED
Settings have been changed in the desired way, the LED Settings can assigned to the frame in which
they will be used with the function Frame.SetLedSettings().

An example of configuring per frame LED settings is given in Listing 7.3 in Python and in Listing 7.4
in C++. A new list of LED Settings is created by copying over the default LED Settings from the list
LED Properties in the Component. The new list of LED Settings is then modified by using the the
LedSetting.SetCurrent() and LedSetting.SetOnTime() functions. A new frame is then created and
the LED Settings for the frame are set to our new list of LED Settings. Finally, the frame is added to
the project and we output the list of LED settings.

start with list of default LED settings from the component
2 ledSettings = LedSettingList()

for ledProperty in myProject.Components()[componentIndex].LedProperties():
4 ledSettings .append(ledProperty.DefaultSettings())

update the current of LED 0 to 2 A
6 ledSettings [0]. SetCurrent(2000)

update the on time of LED 1 to 500 microseconds
8 ledSettings [1]. SetOnTimeUSec(500)

update the on time of LED 2 to 0, disabling it
10 ledSettings [2]. SetOnTime(0)

create a new frame
12 myFrame = Frame(1)

set the LED settings for the frame
14 myFrame.SetLedSettings(ledSettings)

add the frame to the project
16 myProject.AddFrame(myFrame)

output the LED settings
18 for ledSetting in myFrame.LedSettings():

print ”Current: ” + str(ledSetting .Current())
20 print ”PWM: ” + str(ledSetting.PWM())

print ”On Time: ” + str(ledSetting.OnTimeMSec())
22 print ”Delay: ” + str(ledSetting .DelayMSec())

Listing 7.3: Python example of changing the LED Settings of a Frame by modifying the defaults from
the Component.

void LEDSettingsExample(Project myProject, u8 componentIndex) {
2 // start with list of default LED settings from the component

vector<LedSetting> ledSettings;
4 const vector<LedProperty>& ledProperties =

myProject.Components()[componentIndex].LedProperties();
6 for (u8 i=0; i<ledProperties.size () ; i++)

ledSettings .push back(ledProperties[i]. DefaultSettings()) ;
8 // update the current of LED 0 to 2 A

ledSettings [0]. SetCurrent(2000);
10 // update the on time of LED 1 to 500 microseconds

ledSettings [1]. SetOnTimeUSec(500);
12 // update the on time of LED 2 to 0, disabling it

ledSettings [2]. SetOnTime(0);
14 // create a new frame

Frame myFrame(1);
16 // set the LED settings for the frame

myFrame.SetLedSettings(ledSettings);
18 // add the frame to the project

myProject.AddFrame(myFrame);
20 // output the LED settings

for (u8 i=0; i<myFrame.LedSettings().size(); i++)
22 cout << ”Current: ” << myFrame.LedSettings()[i].Current() << endl

<< ”PWM: ” << myFrame.LedSettings()[i].PWM() << endl
24 << ”On Time: ” << myFrame.LedSettings()[i].OnTimeMSec() << endl

<< ”Delay: ” << myFrame.LedSettings()[i].DelayMSec() << endl;
26 }

Listing 7.4: C++ example of changing the LED Settings of a Frame by modifying the defaults from the
Component.

Ajile Suite Software Users Guide
2025-02-12

58

Chapter 8

Triggers

One of the main advantages that industrial imaging devices such as those in the Ajile suite have over
standard imaging devices is the ability tightly syncrhonise devices to each other and to external devices.
This syncrhonisation and control across multiple devices is accomplished through triggering, where signals
with precise timing are emitted from one device and received by the other device. The signal which is
being emitted is called the output trigger signal, and it is output by the master timing device. The
signal which is received is called the input trigger signal, and it is an input to the slave device. The
slave device which receives the input trigger then uses the timing of the signal to syncrhonize its imaging
with the master device.

Triggering is often one of the more difficult concepts to set up when working with imaging devices since
it deals with precise control with hardware devices. The Ajile suite tries to make triggering easier by
offering graphical tools to set up triggers and to simulate their timing in the GUI, and by having a
consistent object oriented interface in the SDK to set up triggers between devices.

Components in the Ajile suite can output their current state information with signals called device
state outputs. For example when a DMD starts displaying a frame, a device state output, called
FRAME STARTED, will be output from the component. These device states are output with very low
latency (around 10 ns) which other devices can use to synchronize with. Components also have inputs
which can accept external signals, called device control inputs, which when observed cause certain
actions to occur in the component. For example, a DMD (or camera) device can be configured to only
started displaying (or exposing) the next frame when a START FRAME device control signal is observed by
the component.

Components such as the Ajile Controller also have external input and output triggers which correspond
to hardware pins which can be used to physically connect and synchronize Ajile devices to external
hardware. These external triggers can be configured by the software to be active high or active low,
to accept rising or falling edge trigger signals, and to have a programmable trigger hold time to allow
interfaces with devices on any time scale.

Ajile projects have within them a list of ’trigger rules’ which can be created by the user. Trigger rules
connect the state of one or more device state outputs or input triggers to a device control input or output
trigger. For example, a trigger rule can connect the output of the FRAME STARTED signal of a DMD to an
external output trigger. Another trigger rule could be created alongside the first to connect the DMD
FRAME STARTED device state and an external input trigger to the START FRAME device control input of a
camera component. The list of trigger rules allows for a great deal of flexibility to achieve a high degree
of synchronization. The trigger rules, once loaded into the project, are evaluated by a Trigger Rules
Engine which runs on FPGA hardware. Each trigger rule is evaluated in around 10 ns, so that very low
triggering latency can be achieved with the trigger rules list.

59

Chapter 8. Triggers

8.1 Device State Outputs

The device state outputs expose the internal running state of components to the external world so that
external devices can synchronize with those states. As was seen in Chapter 4, each component has a list
of device states which indicate what types of device state outputs that the component makes available.
The list of possible of device states are described in Table 8.1.

8.2 Device Control Inputs

The device control inputs allow internal component actions to take place synchronously with signals
observed from the outside world. This allows for Ajile components to coordinate with external devices
by synchronizing with the control input signals. Each component has a list of device controls which
indicate what types of device control inputs that the component makes available. The list of possible of
device controls are described in Table 8.2. Note however that the described behavior only happens if the
given device control is enabled for a given frame, which will be described in section 8.8.

8.3 Trigger Members

There are three types of objects in the Ajile software suite which we must be aware of when working with
triggering. These are External Trigger Settings which determine how external trigger signals will behave,
Trigger Rules which link state outputs and external trigger inputs with control inputs and external trigger
outputs, and Frame Trigger Settings which allow triggers to be enabled and trigger delays to be set on
a per frame basis.

8.3.1 External Trigger Setting Members

External Trigger Settings define how external trigger signals will behave. This includes the trigger type
(i.e. rising edge, falling edge) and trigger hold time. Components have two lists of External Trigger
Settings, one for the external input triggers and one for the external output triggers. Each External
Trigger Setting in the list correspondeds to a physical external trigger, so the lengths of the lists indicate
how many external triggers are available. The members of External Trigger Settings are given in Table
8.3.

8.3.2 Trigger Rule Members

Trigger Rules connect the signals from device state outputs and external input triggers of components
to device control inputs and external output triggers. The Project has a list of Trigger Rule Pairs which
is added to. Trigger Rules are made up of tuples of (Component Index, Trigger Type) pairs, which are
called Trigger Rule Pairs. An individual Trigger Rule has a list of Trigger Rule Pairs which take output
signals and map them to a single trigger rule pair which takes an input signal. Examples of Trigger Rules
will be seen later in this Chapter. For now, the members of a Trigger Rule and Trigger Rule Pair are
given in Table 8.4 and Table 8.5, respectively.

8.3.3 Frame Trigger Setting Members

Each frame has a list of Frame Trigger Settings which allow for the device trigger signals (device control
inputs and device state outputs) to be enabled or disabled on a per frame basis. Frame Trigger Settings
also have a delay time included which allows for trigger signals to or from the device to be delayed
from the time of the actual trigger event. The members of Frame Trigger Settings are given in Table
8.6.

8.4 Trigger Timing

The behavior of device state output and device control inputs is best explained by looking at the timing
diagram of these signals along with the device frame state and lighting state. The timing diagram of

Ajile Suite Software Users Guide
2025-02-12

60

Chapter 8. Triggers

Device State Name Description
NEXT FRAME READY Before the component is ready to start the next frame, the data for the

next frame must be loaded into the device. This loading time takes
a finite amount of time and depends on the type of device. Once the
next frame data has finished loading to the device, the next frame is
then ready to be run (ready for the next display for a DMD, ready
for the next exposure for a camera.) When this happens, this state
output signal is emitted.

FRAME STARTED When the frame begins running (i.e. display begins for DMD or ex-
posure begins for a camera), this state output signal is emitted.

FRAME ENDED When the frame is running the frame time begins to increment for
that frame. When the given frame time for the frame has elapsed
then the frame is finished and this state output signal is emitted.

LIGHTING STARTED If the component has a lighting controller attached, when the lighting
is enabled this device state signal is emitted.

LIGHTING ENDED Once the lighting has been started, the lighting is enabled for the
lighting on time defined for the frame. When this lighting on time
for the frame has elapsed the lighting is disabled and this device state
signal is emitted.

SEQUENCE ITEM STARTED When the first frame of a sequence item starts, this state output signal
is emitted. Internally, this signal is in fact actually the FRAME STARTED

signal, but it is only enabled for the first frame of the sequence item
rather than for each frame.

Table 8.1: List of possible device state outputs which components can expose in their list of device
states.

Device Control Name Description
START FRAME Start the next frame when this control input signal is observed.

Note that the next frame must be ready for display/capture, see the
NEXT FRAME READY device state.

END FRAME Stop the current frame when this control input signal is observed. The
device must be currently running a frame for this to have effect.

START LIGHTING Start the lighting for the current frame when this control input signal
is observed. The device must be currently running a frame, and the
lighting must not have already completed, for this to have effect.

END LIGHTING Stop the lighting for the current frame when this control input signal is
observed. This only has effect if the lighting for the frame has already
started and has not already ended.

START SEQUENCE ITEM Start the first frame of a sequence item when is this control input signal
is observed. Internally, this signal is in fact actually the START FRAME

signal, but it is only enabled for the first frame of the sequence item
rather than for each frame.

Table 8.2: List of possible device control inputs which can be used to synchronize the behavior of
components.

Ajile Suite Software Users Guide
2025-02-12

61

Chapter 8. Triggers

Name Description
Trigger Type The type of trigger which will be observed. Possible values include

rising edge where we are sensitive to a low-to-high signal transition,
falling edge where we are sensitive to a high-to-low signal transition,
any edge which is sensitive to either rising or falling edge signals,
active high level which is sensitive to a high logic level, and active
low level which is sensitive to a low logic level.

Hold Time Relevant for external output triggers only, this is the amount of time
that an output signal will be held in the active state before being reset
to the inactive state. For example, for a rising edge signal the hold
time defines how long after the transition from a low to high signal
that the output signal will remain in the high state before being reset
back to the inactive low state.

Table 8.3: Description of members that are in an ExternalTriggerSetting.

Name Description
Triggers From Device A list of Trigger Rule Pairs which are output from the device.
Trigger To Device A single Trigger Rule Pair which is input to the device.

Table 8.4: Description of members that are in an TriggerRule.

Name Description
Component Index The index of the component within the project components list for

this trigger.
Trigger Type The type of the trigger signal, which can be one of the state outputs

or control inputs which are present in the component.

Table 8.5: Description of members that are in an TriggerRulePair.

Name Description
Trigger Type The type of the trigger signal, which can be one of the available state

outputs or control inputs.
Enabled Flag which sets the trigger signal to be enabled or disable for the given

frame.
Delay The delay after the triggering event is observed when the trigger will

take effect.

Table 8.6: Description of members that are in an Frame Trigger Setting.

Ajile Suite Software Users Guide
2025-02-12

62

Chapter 8. Triggers

the device state ouptuts are shown in Figure 8.1. In this example the device is running in ’internal
timing mode’, meaning that the frames run with the timing given by the frame time (and the lighting
is on for time given by the lighting timing) and when the frame time ends the next frame automatically
starts. In the diagram, when the frame begins a FRAME STARTED state output signal is observed.
Similarly when the lighting has started a LIGHTING STARTED state output signal can be observed.
In conjunction with the start of the frame, the data for the next frame begins to get loaded (as is the
case for a display device such as a DMD.) When the data for the next frame has completed loaded a
NEXT FRAME READY state output signal is emitted which tells the outside world that the device is
ready to start the next frame. Finally, when the frame ends and the lighting ends the FRAME ENDED
and LIGHTING ENDED state outputs are emitted indicating these end events.

The timing diagram of the device control inputs are shown in Figure 8.2. In this example the device is
running in ’external timing mode’, meaning that the frame time and the lighting on time is controlled
by the external device control input signals. In the diagram, the START FRAME control input signal is
first sent to the device, which starts the first frame. Once the frame has started, a START LIGHTING
control input signal is sent to the device to turn on the lighting. Next, an END LIGHTING control
input is sent to turn off the lighting. Finally, and END FRAME control input signal ends the current
frame. Since we are in ’external timing mode’, when the previous frame ends the next frame will not start
until a START FRAME control input signal is observed by the device. Therefore, the device will wait
for an arbitrary amount of time until the next START FRAME control input signal is observed, after
which the next frame begins. Note that it is important to also monitor the NEXT FRAME READY
state output when externally triggering the device frames with the START FRAME control input. If
a START FRAME control input is sent without the next frame being ready, the input signal will be
ignored by the device and will effectively be missed. Therefore an external master should wait for a
NEXT FRAME READY device state to be observed before emitting a START FRAME device con-
trol.

8.5 Trigger Rule Structure

Trigger rules connect, or map, the state of one or more device state outputs or input triggers to a device
control input or output trigger. Each trigger rule has a list of trigger rule pairs called the ’Triggers From
Device’ which define the device states or external input triggers of components, as well as a single trigger
rule pair called the ’Trigger To Device’ which defines the device control or externla output trigger of a
component.

The trigger rules in a project are loaded onto the device and are evaluated by a trigger rules engine
in FPGA hardware. The trigger rules engine performs the logical AND of each of the Triggers From
Device. When each of the device state outputs or external input triggers in the Triggers From Device
are satisfied in parallel (i.e. their logical AND evaluates to 1) then the trigger rules engine fires a singal
to the Trigger To Device which is a device control input or external output trigger. If the Trigger To
Device is an external trigger then the output signal will be described by the ExternalTriggerSetting
for the component (which includes the trigger type and hold time). A trigger rule can be expressed
mathematically with the following equation:

(c1, ds1|ei1) ∧ (c2, ds2|ei2) ∧ ... ∧ (cn, dsn|ein)→ (ci, dcj |eoj) (8.1)

where ci refers to the component with index i, dsi refers to a device state output with index i, eii is an
external input trigger with index i, dci is a device control input and eoj is an external output trigger
with index j.

We now look at two examples of trigger rules. The first trigger rule example is shown in Figure 8.3 which
maps external input and output triggers to and from the control inputs and state outputs of a single
DMD component. Four trigger rules are in this example which are as follows:

(DMD component,NEXT FRAME READY)→ (controller, eo1) (8.2)

Ajile Suite Software Users Guide
2025-02-12

63

Chapter 8. Triggers

Inter-
Frame
Time

Frame 1 Started

LED PWM=100%, On Time=500, Delay=250
Frame Settings: Frame Time=1000

Inter-
Frame
Time

Frame 2 Started

LED: PWM=80%, On Time=500, Delay=250
Frame Settings: Frame Time=750

Inter-
Frame
Time

Data
Loading

Frame
Exposure

LED
Output

Frame
Started
State

Output

Frame
Ended
State

Output

Next Frame
Ready
State

Output

Lighting
Started
State

Output

Lighting
Ended
State

Output

Figure 8.1: Device state output signals over two frames, showing the FRAME STARTED,
FRAME ENDED, NEXT FRAME READY, LIGHTING STARTED and LIGHTING ENDED signals
which correspond to the device frame and lighting states.

Ajile Suite Software Users Guide
2025-02-12

64

Chapter 8. Triggers

Frame
Exposure

LED
Output

Start
Frame
Control
Input

End
Frame
Control
Input

Start
Lighting
Control
Input

End
Lighting
Control
Input

Figure 8.2: Device control input signals over two frames. The START FRAME and END FRAME
input signals control the frame timing, while the START LIGHTING and END LIGHTING input signals
control the lighting timing.

(controller, ei1)→ (DMD component,START FRAME) (8.3)

(controller, ei2)→ (DMD component,START LIGHTING) (8.4)

(controller, ei2)→ (DMD component,END LIGHTING) (8.5)

Note that external input trigger 2 is used to trigger both the start lighting and end lighting events.
This can be done by setting the external trigger to be sensitive to any edge (i.e. both rising and falling
edge).

The four trigger rules in this first example are very simple and only map external trigger signals to/from
device states/controls. A more involved trigger rules example is shown in Figure 8.4 which consists of
two components, a DMD component and a camera component, and three trigger rules. Some of the
trigger rules involve multiple trigger rule pairs in a single rule which are logically AND’ed together. The
trigger rules in this example are:

(DMD,NEXT FRAME READY) ∧ (Camera,NEXT FRAME READY)→ (controller, eo1) (8.6)

(DMD,N F READY) ∧ (Camera,N F READY) ∧ (controller, ei1)→ (DMD,START FRAME) (8.7)

(DMD,LIGHTING STARTED)→ (Camera,START FRAME) (8.8)

The first trigger rule in this example is designed to allow an external master device to be informed when
the next frame is ready to run. When the external device observes that both the DMD and Camera next
frames are ready, the second trigger rule is used to allow the external device to start the next DMD frame

Ajile Suite Software Users Guide
2025-02-12

65

Chapter 8. Triggers

DMD Sequence 1

Sequence Item 1

Frame 1

DMD

External Trigger In 1

External Trigger Out 1

Start
Lighting

Start
Frame

End
Lighting

Nxt Frm
Ready

External Trigger In 2

...
Frame 2

Start
Lighting

Start
Frame

End
Lighting

Nxt Frm
Ready

Frame N

Start
Lighting

Start
Frame

End
Lighting

Nxt Frm
Ready

Time

Trigger Rule 1:

Next Frame Ready

Fire External Trigger 1

Trigger Rule 2:

External Trigger In 1 is High

Start Frame

Trigger Rule 3:

External Trigger In 2 Rise Edge

Start Lighting

Trigger Rule 4:

External Trigger In 2 Fall Edge

End Lighting

Figure 8.3: A set of Trigger Rules which connect external trigger signals to internal device states and
controls.

DMD Sequence 1

Series 1

Frame 1

DMD

Lighting
Started

Start
Frame

Nxt Frm
Ready

Camera Sequence 2

Series 1

Frame 1

Start
Frame

Nxt Frm
Ready

Camera

Start
Frame

Nxt Frm
Ready

External Trigger In 1

External Trigger Out 1

+

+

Frame 2

Lighting
Started

Start
Frame

Nxt Frm
Ready

Frame 2

Start
Frame

Nxt Frm
Ready

Start
Frame

Nxt Frm
Ready

+

+

Time

Trigger Rule 2:

Trigger Rule 1:

DMD Lighting Started

Camera Start Frame

DMD Next Frame Ready
AND

Camera Next Frame Ready
AND

External Trigger In 1 is High

DMD Start Frame

DMD Next Frame Ready
AND

Camera Next Frame Ready

Fire External Trigger 1

Trigger Rule 3:

Figure 8.4: A set of three Trigger Rules defined by the Project which are evaluated in hardware to
enable very tight synchronization between devices.

using the first external trigger in port. Finally, the third trigger signal is an internal trigger between two
components, the DMD and the camera. After the DMD frame has started the lighting will automatically
start which causes a LIGHTING STARTED signal to be emitted. The third trigger rule connects this
to the camera START FRAME signal so that the camera exposure will start when the DMD lighting is
on. The combined effect of all three trigger rules is then a DMD and Camera synchronized as slaves to
an external device, with both the DMD and Camera frames running in perfect lockstep.

8.6 Configuring Trigger Settings

At the component level, components have lists of control inputs and state outputs which can be read,
and list of External Trigger Settings for the input and output triggers. In this section we look at how to
read and modify these component level trigger settings in the GUI and SDK.

8.6.1 Configuring Trigger Settings in the GUI

Viewing the lists of state outputs and control inputs along with the external trigger settings is done via
the Ajile GUI Project Editor which was seen in Chapter 3. After opening the Project Editor, select the

Ajile Suite Software Users Guide
2025-02-12

66

Chapter 8. Triggers

Figure 8.5: Screenshot of configuring trigger settings for the Ajile controller component.

component with the trigger settings of interest from the list of System Components. The list of triggers
and their settings for the component are then shown in the Triggers table.

Figure 8.5 shows the list of triggers for the Ajile Controller component. These are all external triggers
and we can modify the External Trigger Settings whose members were listed in Table 8.3. The trigger
type can be selected with the drop down menu under the Signal Type header, the hold time can be set
to a valid time for the trigger hol time, and the default delay for the trigger can be set, which will be
used in the sequence editor when setting delays for frame triggers.

Figure 8.6 shows the list of triggers for a DMD component. For a DMD (and for a camera) the device
states and controls do not include external triggers and therefore the Triggers table does not allow
modifying the External Trigger Settings which include the Signal Type and Hold Time. We can however
see what triggers are available to the component, which will be useful when designing trigger rules and
sequences.

8.6.2 Configuring Trigger Settings in the SDK

Lists of device state outputs, device control inputs, input trigger settings and output trigger settings are
contained in each Component in the Project. The lists of state outputs and control inputs for a component
can be read from the accessor methods Component.StateOutputs() and Component.ControlInputs(),
while the external input and output trigger settings can be read from the methods Component.InputTriggerSettings()
and Component.OutputTriggerSettings(). To update the input or output trigger settings, such as the
trigger type (e.g. rising or falling edge) and trigger hold time, a special function in the Project is avail-
able, Project.SetTriggerSettings(), which accepts as arguments the component index or component
type of the target component which holds the trigger settings, and the updated lists of input and output
trigger settings.

An example of configuring trigger settings is given in Listing 8.1 in Python and in Listing 8.2 in
C++. The control inputs and state outputs of the DMD component are first output by iterating
through the lists Component.ControlInputs() and Component.StateOutputs(). The lists of input
trigger settings and output trigger settings are then modified and output by iterating through the
lists Component.InputTriggerSettings() and Component.OutputTriggerSettings(). Finally, the
input and output trigger settings were updated in a copy of our component but were never updated
in the Project. The last line therefore updates the input and output trigger settings of the compo-

Ajile Suite Software Users Guide
2025-02-12

67

Chapter 8. Triggers

Figure 8.6: Screenshot of configuring trigger settings for the DMD component.

nent in our Project to be the same settings which are in our copied component using the function
Project.SetTriggerSettings().

1 controllerComponent = myProject.GetComponentWithDeviceType(MZED DEVICE TYPE)
dmdComponent = myProject.GetComponentWithDeviceType(DMD 4500 DEVICE TYPE)

3 # output the list of device controls and states
print ”Device Control Inputs list :”

5 for controlInput in dmdComponent.ControlInputs():
print controlInput

7 print ”Device State Outputs list :”
for stateOutput in dmdComponent.StateOutputs():

9 print stateOutput
update and print the input trigger settings

11 print ”Input Trigger Settings : ”
for i in range(len(controllerComponent.InputTriggerSettings())):

13 controllerComponent.SetInputTriggerSetting(i, ExternalTriggerSetting(RISING EDGE))
print controllerComponent.InputTriggerSettings()[i].TriggerType()

15 # update and print the output trigger settings
print ”Output Trigger Settings: ”

17 for i in range(len(controllerComponent.OutputTriggerSettings())):
controllerComponent.SetOutputTriggerSetting(i, ExternalTriggerSetting(FALLING EDGE, 1000))

19 print str (controllerComponent.OutputTriggerSettings()[i].TriggerType()) + ” ” + str(controllerComponent.
OutputTriggerSettings()[i].HoldTimeUSec())

update the trigger settings in the project
21 myProject.SetTriggerSettings(MZED DEVICE TYPE, controllerComponent.InputTriggerSettings(),

controllerComponent.OutputTriggerSettings());

Listing 8.1: Python example of reading and setting device control inputs, device state outputs, input
trigger settings and output trigger settings.

Ajile Suite Software Users Guide
2025-02-12

68

Chapter 8. Triggers

1 void TriggerSettingsExample(Project myProject) {
Component controllerComponent = myProject.GetComponentWithDeviceType(
AJILE CONTROLLER DEVICE TYPE);

3 Component dmdComponent = myProject.GetComponentWithDeviceType(DMD 4500 DEVICE TYPE);
// output the list of device controls and states

5 cout << ”Device Control Inputs list:” << endl;
for (u8 i=0; i<dmdComponent.ControlInputs().size(); i++)

7 cout << dmdComponent.ControlInputs()[i] << endl;
cout << ”Device State Outputs list:” << endl;

9 for (u8 i=0; i<dmdComponent.StateOutputs().size(); i++)
cout << dmdComponent.StateOutputs()[i] << endl;

11 // update and print the input trigger settings
cout << ”Input Trigger Settings: ” << endl;

13 for (u8 i=0; i<controllerComponent.InputTriggerSettings().size(); i++) {
controllerComponent.SetInputTriggerSetting(i, ExternalTriggerSetting(RISING EDGE));

15 cout << controllerComponent.InputTriggerSettings()[i].TriggerType() << endl;
}

17 // update and print the output trigger settings
cout << ”Output Trigger Settings: ” << endl;

19 for (u8 i=0; i<controllerComponent.OutputTriggerSettings().size(); i++) {
controllerComponent.SetOutputTriggerSetting(i, ExternalTriggerSetting(FALLING EDGE, 1000));

21 cout << controllerComponent.OutputTriggerSettings()[i].TriggerType() << ” ”
<< controllerComponent.OutputTriggerSettings()[i].HoldTimeUSec() << endl;

23 }
// update the trigger settings in the project

25 myProject.SetTriggerSettings(AJILE CONTROLLER DEVICE TYPE,
controllerComponent.InputTriggerSettings(),

27 controllerComponent.OutputTriggerSettings());
}

Listing 8.2: C++ example of reading and setting device control inputs, device state outputs, input trigger
settings and output trigger settings.

8.7 Creating Trigger Rules

The next step in setting up triggering to and from components is to create trigger rules and add them
to the project. Trigger rules are designed to connect the outputs of one or more device states or external
input triggers to the input of a device control or external output trigger.

8.7.1 Creating Trigger Rules in the GUI

Creating trigger rules in the GUI is done via the Trigger Rule Editor, which is shown in Figures 8.7
and 8.8. To open the Trigger Rule Editor click on the Trigger Rule Editor button (Figure 8.7, number
1). The Trigger Rule Editor is a visual editor which allows connecting the outputs of device states and
external input triggers to the inputs of device controls and external output triggers. The components in
the project and their device states and controls are displayed in the visual editor, represented by blocks
which are labelled by the component device type name (Figure 8.7, number 2). On the left hand side of
each component are the device states and/or external triggers in (Figure 8.7, number 3), and on the right
hand side of each component are the device controls and/or external triggers out (Figure 8.7, number 4).
For display purposes, the device state and control ports are labelled by their initials, for example ’NFR’
is the NEXT FRAME READY state output. By holding the mouse over an input or output trigger port the
full name of the trigger will be displayed as a mouse tooltip.

Initially the project will have no trigger rules. To add a new trigger rule, click on the ’Add New Rule’
button (Figure 8.7, number 5). This puts the Trigger Rule Editor into the Adding Rule mode, which will
be shown in the Current Mode text box (Figure 8.7, number 7). Once in the Adding Rule mode we can
start creating a new trigger rule. This is done by clicking on one or more device states or external trigger
in ports to generate a list of Triggers From Device for the trigger rule, then click on any of the device
controls or external trigger out ports to set the Trigger To Device for the rule. Clicking on a device
state or external trigger in which is already included with the trigger rule will remove it from that rule.
Finally, when the trigger rule creation is complete we finish editing the rule and add it to the project,
which is done by clicking the Done Adding/Editing Rule button (Figure 8.7, number 6). Trigger rules

Ajile Suite Software Users Guide
2025-02-12

69

Chapter 8. Triggers

1

5 6 7

3

4

8

2

Figure 8.7: Screenshot of creating trigger rules for mapping external triggers to state outputs and
control inputs. The four trigger rules in this screenshot correspond to the trigger rules shown in Figure
8.3.

are displayed in the visual editor has line segments connecting the input and output triggers (Figure 8.8,
number 2). Once a rule has been added to the project, it is possible to edit or delete existing rules by left
clicking on the trigger rule line segments and selecting Edit Rule or Delete Rule from the popup menu
(Figure 8.8, number 1).

In Figure 8.7 four trigger rules were created in the Trigger Rule Editor. These four trigger rules are the
same as those which we saw in the example of Figure 8.3 which map device states of a DMD component
to external output triggers, and external input triggers to device controls of a DMD. Not only can each
of the Trigger Rules be displayed visually with the connections between output and input triggers, but
each rule is also displayed with a text representation which can help to summarize the trigger rules
(Figure 8.7, number 8). The text representation is of the format ’IF (state1 AND state2 AND ...) THEN
SET (control)’. In Figure 8.8 three trigger rules were created with the Trigger Rule Editor. These rules
correspond to those in the example of Figure 8.4 which connects device states to external output triggers,
and also connects device states and controls between DMD and camera components.

8.7.2 Creating Trigger Rules in the SDK

Creating trigger rules in the SDK involves creating TriggerRule objects, adding TriggerRulePair ob-
jects to the Triggers From Device list which are device state outputs or external triggers in using the func-
tion TriggerRule.AddTriggerFromDevice(), then setting a TriggerRulePair as the Trigger To Device
which is a device control input or external output trigger using the function TriggerRule.SetTriggerToDevice().
When the TriggerRule has been created, it is then added to the project wtih the function Project.AddTriggerRule().

An example of creating trigger rules and adding them to a project is given in Python in Listing 8.3 and
in C++ in Listing 8.4. This example creates the three trigger rules which were seen in the example of

Ajile Suite Software Users Guide
2025-02-12

70

Chapter 8. Triggers

2

1

Figure 8.8: Screenshot of creating trigger rules to connect state outputs and control inputs between
components and to/from external triggers. The three trigger rules in this screenshot correspond to the
trigger rules shown in Figure 8.4.

Ajile Suite Software Users Guide
2025-02-12

71

Chapter 8. Triggers

Figure 8.4. Triggers from three different components are used and so the first step to creating the trigger
rules is to obtain the component indices of the Ajile controller, DMD and camera components in the
project using Project.GetComponentIndexWithDeviceType() which returns the first component that
matches the given device type. The three trigger rules are then created by adding TriggerRulePairs for
the trigger ports corresponding to the example of Figure 8.4. Finally, the three trigger rules are added
to the project with Project.AddTriggerRule() and the number of trigger rules is output by observing
the length of the trigger rule list with Project.TriggerRules().

get the component indices of the controller , DMD and camera
2 controllerIndex = myProject.GetComponentIndexWithDeviceType(MZED DEVICE TYPE)

dmdIndex = myProject.GetComponentIndexWithDeviceType(DMD 4500 DEVICE TYPE)
4 cameraIndex = myProject.GetComponentIndexWithDeviceType(CMV 4000 MONO DEVICE TYPE)

create three trigger rules
6 rule1 = TriggerRule()

rule1 .AddTriggerFromDevice(TriggerRulePair(dmdIndex, NEXT FRAME READY))
8 rule1 .AddTriggerFromDevice(TriggerRulePair(cameraIndex, NEXT FRAME READY))

rule1 .SetTriggerToDevice(TriggerRulePair(controllerIndex, EXT TRIGGER OUTPUT 1))
10 rule2 = TriggerRule()

rule2 .AddTriggerFromDevice(TriggerRulePair(controllerIndex, EXT TRIGGER INPUT 1))
12 rule2 .AddTriggerFromDevice(TriggerRulePair(dmdIndex, NEXT FRAME READY))

rule2 .AddTriggerFromDevice(TriggerRulePair(cameraIndex, NEXT FRAME READY))
14 rule2 .SetTriggerToDevice(TriggerRulePair(dmdIndex, START FRAME))

rule3 = TriggerRule()
16 rule3 .AddTriggerFromDevice(TriggerRulePair(dmdIndex, LIGHTING STARTED))

rule3 .SetTriggerToDevice(TriggerRulePair(cameraIndex, START FRAME))
18 # add the trigger rules to the project

myProject.AddTriggerRule(rule1)
20 myProject.AddTriggerRule(rule2)

myProject.AddTriggerRule(rule3)
22 print len(myProject.TriggerRules())

Listing 8.3: Python example of creating trigger rules and adding them to the project.

void TriggerRuleExample(Project myProject) {
2 // get the component indices of the controller , DMD and camera

int controllerIndex = myProject.GetComponentIndexWithDeviceType(AJILE CONTROLLER DEVICE TYPE);
4 int dmdIndex = myProject.GetComponentIndexWithDeviceType(DMD 4500 DEVICE TYPE);

int cameraIndex = myProject.GetComponentIndexWithDeviceType(CMV 4000 MONO DEVICE TYPE);
6 // create three trigger rules

TriggerRule rule1;
8 rule1 .AddTriggerFromDevice(TriggerRulePair(dmdIndex, NEXT FRAME READY));

rule1 .AddTriggerFromDevice(TriggerRulePair(cameraIndex, NEXT FRAME READY));
10 rule1 .SetTriggerToDevice(TriggerRulePair(controllerIndex, EXT TRIGGER OUTPUT 1));

TriggerRule rule2;
12 rule2 .AddTriggerFromDevice(TriggerRulePair(controllerIndex, EXT TRIGGER INPUT 1));

rule2 .AddTriggerFromDevice(TriggerRulePair(dmdIndex, NEXT FRAME READY));
14 rule2 .AddTriggerFromDevice(TriggerRulePair(cameraIndex, NEXT FRAME READY));

rule2 .SetTriggerToDevice(TriggerRulePair(dmdIndex, START FRAME));
16 TriggerRule rule3;

rule3 .AddTriggerFromDevice(TriggerRulePair(dmdIndex, LIGHTING STARTED));
18 rule3 .SetTriggerToDevice(TriggerRulePair(cameraIndex, START FRAME));

// add the trigger rules to the project
20 myProject.AddTriggerRule(rule1);

myProject.AddTriggerRule(rule2);
22 myProject.AddTriggerRule(rule3);

cout << myProject.TriggerRules().size() << endl;
24 }

Listing 8.4: C++ example of creating trigger rules and adding them to the project.

8.8 Per Frame Trigger Settings

It is possible for device state outputs and device control inputs to be enabled or disabled on a per-frame
basis. Also, trigger delay times can be set frame by frame. In this section we show how to enable/disbale
triggers and set their delays per frame in the GUI and SDK.

Ajile Suite Software Users Guide
2025-02-12

72

Chapter 8. Triggers

8.8.1 Per Frame Trigger Settings in the GUI

In the GUI, enabling triggers and setting their delays per frame is done using the Sequence Editor which
was described in Chapter 6. The frame trigger settings are displayed in the columns labelled ’Trig
Enabled’ and ’Trig Delay’. The settings of the device states are displayed in blue (Figure 6.4, number
12) and the device controls are displayed in orange (Figure 6.4, number 13). The names of the states
and controls are abreviated for display purposes but the full name can be seen by hovering the mouse
of the label. The given device state or control can be enabled or disabled by checking or unchecking the
checkbox in the ’Trig Enabled’ column, and the trigger delay can be set for the device state or control
for the frame by entering a time value in the ’Trig Delay’ column.

When a new frame is added to the sequence, by default the device states and controls are enabled for
the frame if they are used in any of the defined trigger rules. This prevents trigger rules from accidently
being ignored due to forgetting to enable the per-frame trigger settings. This default enabling of frame
trigger settings based on the current trigger rules can be turned off by the user if need be. This is done
in the Project Editor, seen in Figure 8.6, by unchecking the ’Auto Enable’ checkbox next to the device
control or state in the Triggers table.

8.8.2 Per Frame Trigger Settings in the SDK

For many applications we do not need to adjust trigger settings on a per frame basis. In such cases,
frame trigger settings can be ignored and the sequence verifier will automatically enable the device states
and controls when a sequence is run by analysing the list of trigger rules in the project to determine
which device states and controls are in use. For more advanced sequences we show here how to adjust
trigger settings for individual frames.

To enable or disable control inputs and state outputs and set their delay times per frame in the SDK we
create FrameTriggerSetting objects and add them to the frame using Frame.AddControlInputSetting()

or Frame.AddStateOutputSetting(). An example of setting FrameTriggerSetting is given in List-
ing 8.5 in Python and in Listing 8.6 in C++. In this example, two frames are created then four
FrameTriggerSetting objects are created where two of them are used for control inputs and two are for
state outputs. The values of the FrameTriggerSetting are set using the constructor, with the trigger
type (shown in Table 8.1 and 8.2) as the first argument, whether or not the state/control is enabled as the
second argument, and the trigger delay time as the third argument. These FrameTriggerSettings are
added the frames using FrameTriggerSetting.AddControlInputSetting() and Frame.AddStateOutputSetting()

which adds them to the end of the control input and state output setting lists of the frame. The list
lengths are retrieved and printed and finally the frames are added to the project.

Ajile Suite Software Users Guide
2025-02-12

73

Chapter 8. Triggers

1 sequenceID = 1
create two frames

3 frame1 = Frame(sequenceID)
frame2 = Frame(sequenceID)

5 # create FrameTriggerSettings for the control inputs
startFrameSetting = FrameTriggerSetting(START FRAME, False)

7 endLightingSetting = FrameTriggerSetting(END LIGHTING, True, 10000)
create FrameTriggerSettings for the state outputs

9 frameStartedSetting = FrameTriggerSetting(FRAME STARTED, True, 500)
nextReadySetting = FrameTriggerSetting(NEXT FRAME READY, False, 0)

11 # add FrameTriggerSettings to the frames
frame1.AddControlInputSetting(startFrameSetting)

13 frame1.AddControlInputSetting(endLightingSetting)
frame1.AddStateOutputSetting(nextReadySetting)

15 frame2.AddControlInputSetting(startFrameSetting)
frame2.AddStateOutputSetting(frameStartedSetting)

17 print str (len(frame1.ControlInputSettings())) + ” ” + \
str (len(frame1.StateOutputSettings())) + ” ” + \

19 str (len(frame2.ControlInputSettings())) + ” ” + \
str (len(frame2.StateOutputSettings()))

21 # add the frames to the project
myProject.AddFrame(frame1)

23 myProject.AddFrame(frame2)

Listing 8.5: Python example of creating and setting FrameTriggerSettings to enable/disable or set delays
for device states and controls for individual frames.

void FrameTriggerSettingsExample(Project myProject) {
2 u16 sequenceID = 1;

// create two frames
4 Frame frame1(sequenceID);

Frame frame2(sequenceID);
6 // create FrameTriggerSettings for the control inputs

FrameTriggerSetting startFrameSetting(START FRAME, false);
8 FrameTriggerSetting endLightingSetting(END LIGHTING, true, 10000);

// create FrameTriggerSettings for the state outputs
10 FrameTriggerSetting frameStartedSetting(FRAME STARTED, true, 500);

FrameTriggerSetting nextReadySetting(NEXT FRAME READY, false, 0);
12 // add FrameTriggerSettings to the frames

frame1.AddControlInputSetting(startFrameSetting);
14 frame1.AddControlInputSetting(endLightingSetting);

frame1.AddStateOutputSetting(nextReadySetting);
16 frame2.AddControlInputSetting(startFrameSetting);

frame2.AddStateOutputSetting(frameStartedSetting);
18 cout << frame1.ControlInputSettings().size() << ” ”

<< frame1.StateOutputSettings().size() << ” ”
20 << frame2.ControlInputSettings().size() << ” ”

<< frame2.StateOutputSettings().size() << endl;
22 // add the frames to the project

myProject.AddFrame(frame1);
24 myProject.AddFrame(frame2);
}

Listing 8.6: C++ example of creating and setting FrameTriggerSettings to enable/disable or set delays
for device states and controls for individual frames.

Ajile Suite Software Users Guide
2025-02-12

74

Chapter 9

System Control

The previous chapters in this guide have focused on setting up Ajile Projects. To actually make use of
the created projects we now look at how to load projects onto an Ajile system and to run sequences
within projects.

For GUI users loading and running projects is a simple process which involves connecting to the hardware,
loading the currently opened project then selecting a sequence to be run by a component.

Loading and running projects is also straightforward in the SDK. The top-level object which takes care
of managing the system is called the AjileSystem. The AjileSystem takes care of communication
between the user application and the Ajile Controller and makes device drivers available to the user to
load projects to the controller and to run sequences.

9.1 Connecting to the Device

The first step to running projects on the device is to connect to the device. There are a number of
different communication interfaces available to connect user applications and the GUI to Ajile devices,
which include USB 2, USB 3.0, Gigabit Ethernet, and PCI-express. Start by powering on your Ajile
device and connecting its communication interface cable to the PC (e.g. USB cable, Ethernet cable,
PCIe cable). Note that depending on which communication interface you are using, additional drivers
and settings must be installed in the operating system for it work, see Section 1.3 for instructions.

9.1.1 Connecting to the Device in the GUI

Connecting to the hardware device is done in the GUI with the Run Environment which is shown in
Figure 9.1. To get to the Run Environment click on the ’Run Environment’ button on the left navigation
bar (Figure 9.1, number 1). The GUI starts in the disconnected state, as indicated by the ’Connected’
status checkbox which is unchecked (Figure 9.1, number 3). The Ajile GUI remembers the connection
settings from the previous session so that we can immediately connect to the device after the initial setup.
To set up the connection settings, which will likely be required the first time connecting to the device,
click on ’Edit Connection Settings’ (Figure 9.1, number 6). This brings up the Connection Settings dialog
(Figure 9.1, number 6) which allows us to select the connection interface type (i.e. USB 2, Ethernet, etc.)
and to configure the settings for the selected connection type. The USB 2 connection is selected in the
example (Figure 9.1, number 5), and the Ethernet connection settings for the device can be configured if
needed (since the USB 2 device uses Ethernet over USB). Once the connection settings have been set we
accept the settings by clicking on the ’Accept’ button. Finally, we connect to the device by clicking on
the ’Connect to HW’ button (Figure 9.1, number 3). If successful, the Connected status checkbox will
become checked - otherwise an error message will be displayed. Also, the device status window (Figure
9.2, number 1) will display the list of components and their device states once connected.

75

Chapter 9. System Control

1

3 4 6

2

5

Figure 9.1: Screenshot of the Run Environment in the Ajile GUI before connecting to the device.
Connection settings can be configured prior to connecting with the Connection Settings dialog.

9.1.2 Connecting to the Device in the SDK

Connections and communication with the hardware device is accomplished in the SDK using the AjileSystem
interface. Most applications which use the Ajile SDK will be built on a PC system, which is the main
focus of this guide. In this case, we use the HostSystem object to manage the device, which is imple-
mentation of the AjileSystem interface which runs on a host PC (Windows, Linux, Mac). Note that for
advanced users, SDK applications can actually be run directly on the device in an embedded ARM-Linux
environment by using the MultiCoreSystem implementation of the AjileSystem. This advanced usage
will be the topic of future tutorials.

An example of setting up connection settings and connecting to the device using the HostSystem object
is given in Listing 9.1 in Python and in Listing 9.2 in C++. A new HostSystem (which implements
AjileSystem) is first created. The Ethernet connection settings for the AjileSystem are then set using
AjileSystem.SetConnectionSettingsStr(). Strings are passed in for the connection settings which
include the IP address, netmask, gateway address and port (the port is a 16-bit integer). Once the
connection settings are configured, we can start the system with AjileSystem.StartSystem(). Starting
the AjileSystem has the effect of connected to the hardware device using the given connection settings
and also starting the message handling communication drivers internally to the AjileSystem. Note that
the communication system inside the AjileSystem runs independantly of the user application so that
user code does not need to worry about the details of that messaging system. Finally, we display whether
the system is connected with AjileSystem.IsConnected() and return the AjileSystem to the caller
function so that the rest of the application can continue to use it to communicate with the device for the
lifetime of the program.

Ajile Suite Software Users Guide
2025-02-12

76

Chapter 9. System Control

1 def ConnectToDevice():
create a new HostSystem, which is an AjileSystem instance

3 system = HostSystem()
set connection settings for the system

5 system.SetConnectionSettingsStr(”192.168.2.210”,\
”255.255.255.0”,\

7 ”0.0.0.0”, 5005)
start the system, which will establish the connection

9 system.StartSystem()
print system.IsConnected()

11 # return the system so that it can be used by the application
return system

Listing 9.1: Python example of creating an AjileSystem as a HostSystem, setting its Ethernet connection
settings, and starting it (which connects it to the hardware device).

AjileSystem∗ ConnectToDevice() {
2 // create a new HostSystem, which is an AjileSystem instance

AjileSystem∗ system = new HostSystem();
4 // set connection settings for the system

system−>SetConnectionSettingsStr(”192.168.2.210”,
6 ”255.255.255.0”,

”0.0.0.0”, 5005);
8 // start the system, which will establish the connection

system−>StartSystem();
10 cout << system−>IsConnected() << endl;

// return the system so that it can be used by the application
12 return system;
}

Listing 9.2: C++ example of creating an AjileSystem as a HostSystem, setting its Ethernet connection
settings, and starting it (which connects it to the hardware device).

9.2 Loading Projects

Once we are connected to the device the next step is to load our project onto the device so that it can
be run.

9.2.1 Loading Projects in the GUI

After connecting to the device a list of Actions appear in the Run Environment which allows loading and
running projects. By clicking on the ’Load’ button (Figure 9.2, number 3) the currently opened project
is sent (loaded) to the device Ajile Controller. Once complete the ’Run’ button appears (Figure 9.2,
number 4) and the sequences in the project are ready to be run by the components in the system.

9.2.2 Loading Projects in the SDK

Once we have an AjileSystem which is connected to the device, we need to get a ControllerDriver from
it which is able to load projects onto the Ajile Controller and run sequences. The ControllerDriver

object is obtained by using the function AjileSystem.GetDriver() which returns it from the running
system. The ControllerDriver has numerous functions which enable controlling the Ajile devices and
is the most important object for dealing with system control. Here we look mainly at the function
ControllerDriver.LoadProject(), which as the name suggests loads (sends) an entire project to the
device.

An example of loading a project to the device is given in Python in Listing 9.3 and in C++ in Listing 9.4.
It is assumed that an AjileSystem has been passed into the example function which is already started and
connected to the device, as well as a valid project for the device. We get access to the ControllerDriver
object which is inside the AjileSystem with AjileSystem.GetDriver(). The ControllerDriver can
then be used to load our project to the device with ControllerDriver.LoadProject(). Notice that

Ajile Suite Software Users Guide
2025-02-12

77

Chapter 9. System Control

1

3

42

Figure 9.2: Screenshot of the Run Environment in the Ajile GUI once connected. The project is loaded
and the sequence can be selected from our project to run.

ControllerDriver.LoadProject() is non-blocking, meaning that it returns immediately without wait-
ing for the project to be completely transferred to the device. The actual transfer of the project is
done in the background on a seperate thread by the AjileSystem, and this transfer may be almost
instant or may take several seconds depending on the connection type used and on the size of the
project. In order to know when the project has been fully loaded onto the device we use the function
ControllerDriver.WaitForLoadComplete and pass in a timeout value (in milliseconds). Passing in a
negative timeout value as shown in the example makes the application wait indefinitely until the transfer
has completed.

1 def LoadProjectExample(ajileSystem, myProject):
get the controller driver from the AjileSystem

3 driver = ajileSystem−>GetDriver()
load the project onto the device

5 driver .LoadProject(myProject)
loading is non−blocking. Wait for the project load to complete

7 driver .WaitForLoadComplete(−1)

Listing 9.3: Python example of getting a ControllerDriver from the AjileSystem and using it to load
a project onto the Ajile Controller device.

#include ”ControllerDriver.h”
2 void LoadProjectExample(AjileSystem∗ ajileSystem, Project myProject) {

// get the controller driver from the AjileSystem
4 ControllerDriver∗ driver = ajileSystem−>GetDriver();

// load the project onto the device
6 driver−>LoadProject(myProject);

// loading is non−blocking. Wait for the project load to complete
8 driver−>WaitForLoadComplete(−1);
}

Listing 9.4: C++ example of getting a ControllerDriver from the AjileSystem and using it to load a
project onto the Ajile Controller device.

Ajile Suite Software Users Guide
2025-02-12

78

Chapter 9. System Control

9.3 Running Sequences

After loading a project to the device, the next step is to run a sequence on the target component.

9.3.1 Running Sequences in the GUI

The first step to running a sequence is to select which sequence is to run on which component. This is
done by selecting the sequence from the sequence selection drop down beneath the component on which
it will run (Figure 9.2, number 2). Next, with the project loaded onto the device the ’Run’ button
appears in the Run Environment below the ’Load’ button (Figure 9.2, number 4). Clicking on the ’Run’
button will begin the selected sequence(s) on the target component(s). The sequence will run on the
component until the end of the sequence, after which the component will go back into the stopped (idle)
state. Running sequences can also be paused or stopped before they complete by clicking on the ’Pause’
or ’Stop’ buttons. Pausing has the effect of repeating the currently running sequence item indefinitely
on the component until the sequence is resumed. In addition there is a ’Next’ button which when clicked
causes the running sequence to immediately advance to its next sequence item regardless of the current
frame and sequence item repeat count. This allows us to effectively ’step’ through the sequence one
sequence item at a time by using the ’Next’ sequence item button.

9.3.2 Running Sequences in the SDK

Running sequences on a target component in the SDK is accomplished using the function ControllerDriver.StartSequence()

where we pass in the sequence ID of the sequence in our project that we would like to run and the com-
ponent index of the component which will run the sequence (which is the index of the component in
the list of components in the project). An example of running a sequence is given in Python in Listing
9.5 and in C++ in Listing 9.6. In the example we re-use the example of Listing 9.3 and 9.4 to load
the project onto the device. Following that, assuming that the loaded project has within it a sequence
with sequence ID 1, and the connected device has a component at component index 1 which is com-
patible with that sequence, then we can run sequence 1 on component 1 by passing in the sequence
ID and component index to ControllerDriver.StartSequence(). Once the sequence has started, we
may wish to pause it mid sequence. This is done with the ControllerDriver.PauseSequence() func-
tion. Note that ControllerDriver.PauseSequence() only requires the component index and not the
sequence ID since the sequence is already running on that component. While paused we can advance
the current sequence item one at a time with the function ControllerDriver.NextSequenceItem().
Finally, we resume the sequence with ControllerDriver.StartSequence() and then stop it with
ControllerDriver.StopSequence().

1 def RunSequenceExample(ajileSystem, myProject):
load the project to the system using our previous example

3 LoadProjectExample(ajileSystem, myProject)
get the controller driver from the AjileSystem

5 driver = ajileSystem−>GetDriver()
run the sequence with ID 1 on component 1

7 sequenceID = 1
componentIndex = 1

9 driver .StartSequence(sequenceID, componentIndex)
wait the sequence on our component

11 driver .PauseSequence(componentIndex)
advance the sequence items manually one by one

13 driver .NextSequenceItem(componentIndex)
driver .NextSequenceItem(componentIndex)

15 # start the sequence again (i .e. un−pause the component)
driver .StartSequence(sequenceID, componentIndex)

17 # finally , stop the sequence
driver .StopSequence(componentIndex)

Listing 9.5: Python example of loading a project onto the Ajile Controller, then running, pausing and
stopping a sequence from that project on a target component.

Ajile Suite Software Users Guide
2025-02-12

79

Chapter 9. System Control

1 void RunSequenceExample(AjileSystem∗ ajileSystem, Project myProject) {
// load the project to the system using our previous example

3 LoadProjectExample(ajileSystem, myProject);
// get the controller driver from the AjileSystem

5 ControllerDriver& driver = ∗ajileSystem−>GetDriver();
// run the sequence with ID 1 on component 1

7 u16 sequenceID = 1;
u8 componentIndex = 1;

9 driver .StartSequence(sequenceID, componentIndex);
// wait the sequence on our component

11 driver .PauseSequence(componentIndex);
// advance the sequence items manually one by one

13 driver .NextSequenceItem(componentIndex);
driver .NextSequenceItem(componentIndex);

15 // start the sequence again (i .e. un−pause the component)
driver .StartSequence(sequenceID, componentIndex);

17 // finally , stop the sequence
driver .StopSequence(componentIndex);

19 }

Listing 9.6: C++ example of loading a project onto the Ajile Controller, then running, pausing and
stopping a sequence from that project on a target component.

9.4 Device Status Information

While we are connected to the device there is a variety of status information which can be retrieved from
the device, including the state of each of the devices in the system and the current status of the running
sequence (i.e. the current frame number, sequence item number, and repeat count).

9.4.1 Device State

Each component in the system has a device state which shows the current run state of the component
(running, paused or stopped), the on-board temperature of the device in degrees Celcius, the temperatures
of the connected LEDs and LED controller if applicable, the current status of the running sequence on
the device, and the state of the device control inputs and device state outputs for the component.

Getting the Device State in the GUI

The device states of components are automatically retrieved and updated in the Ajile GUI while we
are connected to the device. The device states are displayed in the device status window of the Run
Environment (Figure 9.2, number 1) and can be used to see what components are available and to
monitor their states and temperatures.

Getting the Device State in the SDK

Getting the device state of the components in the system is done in two steps in the SDK. First the device
states must be retrieved from the connected device. This is done by using the ControllerDriver.RetrieveDeviceState()
function to request the updated states from the device. ControllerDriver.RetrieveDeviceState()

can accept an optional timeout argument to allow the caller to wait for the device states to be received.
Once the device states have been retrieved they are stored in the AjileSystem and are obtained with
AjileSystem.GetDeviceState(). The component index (as indexed in the project components list)
is passed into AjileSystem.GetDeviceState() and a DeviceState object is returned which contains
the device state information of that component. An example of retrieving the device state of a DMD
device and outputting its temperature information is shown in Listing 9.7 in Python and in Listing 9.8
in C++.

Ajile Suite Software Users Guide
2025-02-12

80

Chapter 9. System Control

1 def DeviceStateExample(ajileSystem):
dmdComponentIndex = 1

3 # retrieve the device state and wait for it to return
ajileSystem.GetDriver().RetrieveDeviceState(−1)

5 # get the retrieved device state
state = ajileSystem.GetDeviceState(dmdComponentIndex)

7 # output the list of temperatures from the device state
for temperature in state.Temperatures():

9 print temperature

Listing 9.7: Python example of retrieving the device states of the connected components, then getting
the DMD device state and outputting its temperature list.

1 void DeviceStateExample(AjileSystem∗ ajileSystem) {
u8 dmdComponentIndex = 1;

3 // retrieve the device state and wait for it to return
ajileSystem−>GetDriver()−>RetrieveDeviceState(−1);

5 // get the retrieved device state
DeviceState state = ∗ajileSystem−>GetDeviceState(dmdComponentIndex);

7 // output the list of temperatures from the device state
for (u8 i=0; i<state.Temperatures().size(); i++)

9 cout << state.Temperatures()[i] << endl;
}

Listing 9.8: C++ example of retrieving the device states of the connected components, then getting the
DMD device state and outputting its temperature list.

9.4.2 Sequence Status

Each time a frame in a sequence is run by a component a status message is returned to the connected PC
to inform it that the frame has completed. These are called sequence status messages and they indicate
the last completed sequence, sequence item and frame number along with the current repeat count for
the sequnece item and sequence. Sequence status message are queued by the Ajile software so that user
applications can easily retrieve them and continuously monitor the current sequence status.

Getting the Sequence Status in the GUI

The sequence status messages are automatically updated in the Ajile GUI each time frames are ex-
ecuted by the components. The last completed frame number, sequence item number, and sequence
item/sequence repeat counts are shown in the device status window of the Run Environment.

Getting the Sequence Status in the SDK

Sequence status messages are automatically sent to the Ajile SDK driver each time a frame completes
on a component. These sequence status messages are received by the AjileSystem and are queued in
the ControllerDriver. There is a queue of sequence status messages for each connected component in
the system. These are stored as SequenceStatusValues objects and include the sequence ID, sequence
repeat count, sequence item index, sequence item repeat count, and frame index of the frame which has
completed on the component.

The next SequenceStatusValues in the queue for a given component retrieved with the function
ControllerDriver.GetNextSequenceStatus(), which takes as an argument the index of that compo-
nent. The queue of SequenceStatusValues is of finite size and when it is full the new SequenceStatusValues

is added to the queue while the oldest SequenceStatusValues is removed. The maximum size of the
SequenceStatusValues queue can be changed with ControllerDriver.SetSequenceStatusMaxQueueSize().
We can check if the queue is empty or not with ControllerDriver.IsSequenceStatusQueueEmpty() or
we can wait for the next SequenceStatusValues to arrive with ControllerDriver.WaitForSequenceStatus().
An example of checking for and displaying SequenceStatusValues is shown in Listing 9.9 and 9.10 in
Python and C++, respectively.

Ajile Suite Software Users Guide
2025-02-12

81

Chapter 9. System Control

def SequenceStatusExample(ajileSystem):
2 dmdComponentIndex = 1

driver = ajileSystem.GetDriver()
4 # while the DMD component is in the running state

while ajileSystem.GetDeviceState(dmdComponentIndex).RunState() == RUN STATE RUNNING:
6 # check if the sequence status queue is empty

if not driver .IsSequenceStatusQueueEmpty():
8 # get and output the next sequence status from the queue

sequenceStatus = driver.GetNextSequenceStatus(dmdComponentIndex)
10 print sequenceStatus.SequenceID() + ” ” \

+ sequenceStatus.SequenceRepeat() + ” ” \
12 + sequenceStatus.SequenceItemIndex() + ” ” \

+ sequenceStatus.SequenceItemRepeat() + ” ” \
14 + sequenceStatus.FrameIndex()

else :
16 # the sequence status queue is empty, so wait

driver .WaitForSequenceStatus()

Listing 9.9: Python example of retrieving and outputting the sequence status values from the device
while the component is running the sequence.

1 void SequenceStatusExample(AjileSystem∗ ajileSystem) {
u8 dmdComponentIndex = 1;

3 ControllerDriver& driver = ∗ajileSystem−>GetDriver();
// while the DMD component is in the running state

5 while (ajileSystem−>GetDeviceState(dmdComponentIndex)−>RunState() == RUN STATE RUNNING) {
// check if the sequence status queue is empty

7 if (! driver .IsSequenceStatusQueueEmpty()) {
// get and output the next sequence status from the queue

9 SequenceStatusValues sequenceStatus =
driver .GetNextSequenceStatus(dmdComponentIndex);

11 cout << sequenceStatus.SequenceID() << ” ”
<< sequenceStatus.SequenceRepeat() << ” ”

13 << sequenceStatus.SequenceItemIndex() << ” ”
<< sequenceStatus.SequenceItemRepeat() << ” ”

15 << sequenceStatus.FrameIndex() << endl;
} else

17 // the sequence status queue is empty, so wait
driver .WaitForSequenceStatus();

19 }
}

Listing 9.10: C++ example of retrieving and outputting the sequence status values from the device while
the component is running the sequence.

9.5 Streaming Sequences

The simplest way to run a sequence which we have seen up to this point is to preload the entire sequence
along with all required images to the device in advance, then start the sequence after the entire project
has been loaded to the device. This works well for the majority of sequences since most Ajile devices
have 1 GB of on board memory which is plenty of storage most of the time. There are cases however
where we need to run sequences that are larger than the on board memory store. In addition, it may
be necessary to dynamically change frames and image data on the fly while the sequence is running, for
example based on the output and analysis of images from a camera the DMD images need to be adapted.
For these cases we move from the simple preloaded sequence approach and look at streaming sequences
which allow an unlimited number of images to be streamed continuously from a PC.

The Ajile software suite makes streaming sequences easy to implement as all flow control and time
synchronization is handled internally by the system. A first-in first-out (FIFO) queue interface is made
available in the Ajile system which allows sequence items to be added to the queue. While the steraming
sequence is running, the streaming sequence items are taken from the front of the queue one by one and
sent to the device to be run, while user applications keep the queue topped up by continually adding
streaming sequence items to the back of the queue.

Ajile Suite Software Users Guide
2025-02-12

82

Chapter 9. System Control

9.5.1 Running Streaming Sequences in the SDK

Loading and running streaming sequences varies somewhat from preloaded sequences. Listing 9.11 and
9.12 in both Python and C++ shows an example of running a streaming sequence with images that are
generated dynamically using OpenCV. First a streaming sequence is created by specifying its sequence
type as SEQ TYPE STREAM which lets the Ajile SDK know how the sequence items in the sequence will be
run (Python lines 9-14, C++ lines 11-16). Then a loop is run which will continually top up the streaming
sequence items in the streaming queue of the ControllerDriver (Python lines 17-40, C++ lines 19-
45). The function ControllerDriver.GetNumStreamingSequenceItems() tells the program how much
space is available in the outgoing streaming sequence item queue (Python line 19, C++ line 21). If the
number of items in the queue is less than our alotted amount a new streaming sequence item is created
and added to the queue. OpenCV is used to draw a new image which has a 32-bit counter drawn on
the image (Python lines 20-24, C++ lines 22-27). The OpenCV/NumPy image is converted to an Ajile
Image object as we have previously seen in Chapter 5 (Python lines 25-28, C++ lines 28-32). Then a
new sequence item and frame are newly created which will be streamed to the device (Python lines 29-31,
C++ lines 32-34). Notice that the image ID passed into the Frame constructor is zero - this is because
rather than the frame using an image which is in the project preloaded image store, the frame will instead
use a streaming image which is attached to the frame itself. This process of attaching a streaming image
to a frame is done with Frame.SetStreamingImage (Python line 33, C++ line 36). Images which are
attached to streaming frames/sequence items are valid only for the lifetime of the sequence item. When
a streaming sequence item has been run by the component the sequence item along with its frames and
any streaming images are discarded. Finally, the newly created streaming sequence item is added to the
queue of the ControllerDriver with ControllerDriver.AddStreamingSequenceItem() (Python line
36, C++ line 39).

Note that the sequence is started in the usual way with ControllerDriver.StartSequence(), however
the example delays the start of the sequence until the streaming sequence item queue has been sufficiently
filled (Python lines 38-39, C++ lines 41-43). Also note that for streaming sequences the actual frame
rate of the sequence will be limited by the transfer rate of the communication type between the PC and
the device. For example, Gigabit Ethernet and USB 2 typically achieve data rates of only a few hundred
Mb/s which correspond to a few hundred frames per second for a DMD 4500 device. If frame rates
which are faster than the communcation channel data rate are specified then the device will inevitably
run out of data part way through the streaming sequence. When this happens one of two things can
happen on the device which the user application has control of. The device can stop the currently
running sequence when it runs out of streaming sequence items, or it can repeat the last streaming
sequence item which it has received in its queue indefinitely until new sequence items are received. The
out of data behavior of a sequence is controlled by setting the out of data action of the sequence using
Sequence.SetOutOfDataAction. By setting the out of data action to RUN STATE STOPPED the sequence
stops when it runs out of streaming sequence items, while setting it to RUN STATE PAUSED will repeat
the last sequence items when it runs out of data. In the example the out of data behavior is set in the
sequence constructor to RUN STATE PAUSED (Python line 11, C++ line 13).

Ajile Suite Software Users Guide
2025-02-12

83

Chapter 9. System Control

1 runningStream = False
def StreamingSequenceExample(ajileSystem, myProject):

3 dmdSequenceID = 1
dmdComponentIndex = 1

5 counter = 0
sequenceRunning = False

7 driver = ajileSystem.GetDriver()
maxStreamingSequenceItems = driver.GetStreamingSequenceItemQueueSize()

9 # create a streaming sequence and add it to the project
myProject.AddSequence(

11 Sequence(dmdSequenceID, ”Streaming Sequence”,
DMD 4500 DEVICE TYPE, SEQ TYPE STREAM,

13 1, SequenceItemList(), RUN STATE PAUSED))
driver .LoadProject(myProject)

15 # add streaming sequence items in a continuous loop
runningStream = True

17 while runningStream:
check if the queue is full

19 if driver .GetNumStreamingSequenceItems(dmdComponentIndex) < maxStreamingSequenceItems:
create an NumPy image the size of the DMD4500

21 npImage = np.zeros(shape=(DMD IMAGE HEIGHT MAX, DMD IMAGE WIDTH MAX), dtype=np.uint8
)

draw text on the NumPy image with OpenCV
23 cv2.putText(npImage, str(counter), (50, 450), cv2.FONT HERSHEY PLAIN, 5, 255, 5)

counter++
25 # create an Image object

streamingImage = Image()
27 # convert the OpenCV image to an Ajile Image

streamingImage.ReadFromMemory(npImage, 8, ROW MAJOR ORDER, DMD 4500 DEVICE TYPE)
29 # create a new sequence item and frame to be streamed

streamingSeqItem = SequenceItem(dmdSequenceID, 1)
31 streamingFrame = Frame(dmdSequenceID, 0, 10000000, 0, 0, DMD IMAGE WIDTH MAX,

DMD IMAGE HEIGHT MAX)
attach the next streaming image to the streaming frame

33 streamingFrame.SetStreamingImage(streamingImage)
streamingSeqItem.AddFrame(streamingFrame)

35 # add the streaming sequence item to the queue
driver .AddStreamingSequenceItem(streamingSeqItem, dmdComponentIndex)

37 elif not sequenceRunning:
start the sequence once the queue has been filled

39 driver .StartSequence(dmdSequenceID, dmdComponentIndex)
sequenceRunning = True

Listing 9.11: Python example of sending a streaming sequence.

Ajile Suite Software Users Guide
2025-02-12

84

Chapter 9. System Control

1 bool runningStream = false;
void StreamingSequenceExample(AjileSystem∗ ajileSystem, Project myProject) {

3 u16 dmdSequenceID = 1;
u8 dmdComponentIndex = 1;

5 u32 counter = 0;
char counterStr [32];

7 bool sequenceRunning = false;
cv ::Mat cvImage;

9 ControllerDriver& driver = ∗ajileSystem−>GetDriver();
u32 maxStreamingSequenceItems = driver.GetStreamingSequenceItemQueueSize();

11 // create a streaming sequence and add it to the project
myProject.AddSequence(

13 Sequence(dmdSequenceID, ”Streaming Sequence”,
DMD 4500 DEVICE TYPE, SEQ TYPE STREAM,

15 1, deque<SequenceItem>(), RUN STATE PAUSED));
driver .LoadProject(myProject);

17 // add streaming sequence items in a continuous loop
runningStream = true;

19 while (runningStream) {
// check if the queue is full

21 if (driver .GetNumStreamingSequenceItems(dmdComponentIndex) < maxStreamingSequenceItems) {
// create an OpenCV image the size of the DMD4500

23 cvImage = cv::Mat::zeros(DMD IMAGE HEIGHT MAX, DMD IMAGE WIDTH MAX, CV 8U);
// draw text on the OpenCV image

25 sprintf (counterStr, ”%08x”, counter);
cv :: putText(cvImage, counterStr, cv::Point(50, 450), cv ::FONT HERSHEY TRIPLEX, 5, 255, 5);

27 counter++;
// create an Image object

29 Image streamingImage;
// convert the OpenCV image to an Ajile Image

31 streamingImage.ReadFromMemory((u8∗)cvImage.data, cvImage.rows, cvImage.cols, 1, 8,
ROW MAJOR ORDER, DMD 4500 DEVICE TYPE);

// create a new sequence item and frame to be streamed
33 SequenceItem streamingSeqItem = SequenceItem(dmdSequenceID, 1);

Frame streamingFrame = Frame(dmdSequenceID, 0, 10000000, 0, 0, DMD IMAGE WIDTH MAX,
DMD IMAGE HEIGHT MAX);

35 // attach the next streaming image to the streaming frame
streamingFrame.SetStreamingImage(streamingImage);

37 streamingSeqItem.AddFrame(streamingFrame);
// add the streaming sequence item to the queue

39 driver .AddStreamingSequenceItem(streamingSeqItem, dmdComponentIndex);
} else if (! sequenceRunning) {

41 // start the sequence once the queue has been filled
driver .StartSequence(dmdSequenceID, dmdComponentIndex);

43 sequenceRunning = true;
}

45 }
}

Listing 9.12: C++ example of sending a streaming sequence.

Ajile Suite Software Users Guide
2025-02-12

85

Chapter 10

Color and Grayscale Display

Natively the DMD is a purely binary device where each micromirror (pixel) can have two possible states,
‘1’ (on) or ‘0’ (off). In order to display images which higher bit depths than 1-bit we take advantage of
the extremely high speed of the DMD to modulate each of the n bitplanes of an n-bit image according
to their bit position.

As an example, consider an 8-bit grayscale image where each pixel in the image can be of 28− 1 possible
gray levels. To display this 8-bit image with our binary DMD device we actually split the 8-bit image
into 8 separate 1-bit images, one for each bit, called bitplanes. We then display each of the 1-bit bitplanes
separately by the DMD one after another in a sequence for an amount of time proportional to their bit
position. Thus the most significant bitplane will be displayed for 28/2 units of time, the second most
significant bitplane will be displayed for 28/4 time units, and so on down to the least significant bit which
is displayed for 28/256 = 1 time unit.

Since DMDs have a minimum frame time which is limited by the data loading rate into the DMD, it is
often the case that an individual time unit is too long in order to achieve reasonably high-speed grayscale
or color display times. For example, the DMD 4500 device has a minimum frame time of 150 µs (or
around 6600 frames/second). The 8 bitplanes of an 8-bit grayscale image would need to displayed for a
total of 28 = 256 time units, and so with a 150 µs minimum time unit we would end up with a minimum
8-bit grayscale image time of 256×150µs = 38.4 ms (or around 26 Hz). To achieve faster grayscale/color
display times we therefore need to control the LED power in addition to the bitplane frame times to
obtain time units which are less than the minimum DMD frame time. The simplest way to control the
LED power is to reduce the LED on time as a fraction of the DMD frame time, since the Ajile LED
controller is capable of turning the LEDs on for very short bursts (i.e. around 10 µs). In addition, LED
current can also be controlled per frame to give even more control and performance for accurate display
of grayscale and color.

Color images are displayed by the DMD by sequentially enabling the red, green and blue LEDs synchro-
nized with the display of each of the RGB color channels of the image. The simplest type of color image
is a 3-bit color image, where each color channel is a single 1-bit bitplane. In this case the 3 channels are
simply displayed by the DMD sequentially, and the red, green and blue LEDs are enabled for the corre-
sponding channel. For higher bit-depth color images, each channel is split into its individual bitplanes
and displayed in the same way as a grayscale image but only using one of the LEDs per channel.

Fortunately the Ajile software suite is equipped with powerful tools which make it easy to automatically
import and display grayscale and color images of arbitrary bit depths while keeping precise linearity
of image intensity levels. The Ajile software allows users to split color and grayscale images into their
individual list of bitplanes, and is also equipped with optimization functions which determine the ideal
frame times and LED powers for each individual bitplane and arranges them in the correct order in a
sequence to enable the proper displayed grayscale or color image by the DMD.

86

Chapter 10. Color and Grayscale Display

10.1 Displaying Color/Grayscale as a List of Bitplanes

There are two main aspects of displaying multi-bit (grayscale or color) images by a 1-bit binary DMD
device. First we must split the multi-bit composite image into multiple 1-bit bitplanes so that they are
compatible with the DMD. Second we must arrange the multiple 1-bit bitplanes into a sequence of frames
with correct timing and lighting instructions to display the correct intensity level for every given pixel
location.

10.1.1 Splitting Multi-Bit Images into Bitplanes

As we saw in Chapter 5, multi-bit images in row-major order are arranged starting from the top left
pixel at row 0 and column 0, followed by the pixel to its right at row 0 and column 1, and so on. For
an n-bit image, the n bits of each pixel are stored together at each pixel location. With the notation of
pjbi denoting the ith bit of pixel number j, an example 8-bit image with N columns and M rows would
be arranged according to the matrix in equation 10.1 as follows:

p0b0 p0b1 . . . p0b7 p1b0 p1b1 . . . pN−1b7
pNb0 pNb1 . . . pNb7 pN+1b0 pN+1b1 . . . p2N−1b7

...
...

. . .
...

...
...

. . .
...

pN(M−1)b0 pN(M−1)b1 ... pN(M−1)b7 p(N+1)(M−1)b0 p(N+1)(M−1)b1 ... pNM−1b7

 (10.1)

That is, each of the 8 bits of pixel 0 are listed, followed by the 8 bits of pixel 1 and so on up to the 8
bits of pixel N − 1, followed by the 8 bits of pixel N which is at row 1, and so on. To split this image
into each of its 8 bitplanes, we mean to create 8 × 1-bit images for each of the corresponding 8 bitplanes
of the original image. For this example we would therefore have 8 individual bitplane images according
to the matrix in 10.2 as follows:

p0bi p1bi p2bi p3bi . . . pN−1bi
pNbi pN+1bi pN+2bi pN+3bi . . . p2N−1bi

...
...

...
...

. . .
...

pN(M−1)bi p(N+1)(M−1)bi p(N+2)(M−1)bi p(N+3)(M−1)bi . . . pNM−1bi

where i = 0, 1, . . . , 7

(10.2)

The Ajile software suite has functions which easily take care of splitting n-bit images such as in Equation
10.1 into n individual 1-bit images such as in Equation 10.2. The bit-depth n can be an arbitrary depth,
for example 1, 4, 8, 10, 12, 16 and even higher bit depths are fully supported with the tools.

10.1.2 Displaying Bitplanes of n-Bit Images

As was discussed in the introductory discussion, to display an n-bit grayscale image we must display each
of the 1-bit bitplanes of the image sequentially by the binary DMD. In order to obtain the correct gray
levels the most significant bitplanes must be displayed proportionally longer than the least significant
bitplanes.

In the Ajile software suite, the n bitplanes of an n-bit image are arranged into a Sequence Item which
is composed of n Frames (we have seen Sequence Items and Frames in detail in Chapter 6.) The i-th
Frame in the color or grayscale Sequence Item therefore refers to the i-th bitplane in the n-bit composite
image. The Ajile software facilitates creating color or grayscale Sequence Items where each of the n
Frames have frame times and LED powers which are proportional to the bitplane location of the Frame’s
bitplane.

10.1.3 Grayscale Display: Frame Time Control Only

The simplest case for grayscale display is when the total display time of the image can be obtained by
modulating the DMD frame times alone. This means that for this case the frame time for the least

Ajile Suite Software Users Guide
2025-02-12

87

Chapter 10. Color and Grayscale Display

b7 b6 b5 b4

b3 b2 b1 b0

Time
Figure 10.1: Proportional frame timing of the 8 bitplanes of an 8-bit image.

Bitplane
Number

Frame
Time

Red
LED
Time

Red
LED
Current

Green
LED
Time

Green
LED
Current

Blue
LED
Time

Blue
LED
Current

7 19.2 19.2 3500 19.2 5000 19.2 5000
6 9.6 9.6 3500 9.6 5000 9.6 5000
5 4.8 4.8 3500 4.8 5000 4.8 5000
4 2.4 2.4 3500 2.4 5000 2.4 5000
3 1.2 1.2 3500 1.2 5000 1.2 5000
2 0.6 0.6 3500 0.6 5000 0.6 5000
1 0.3 0.3 3500 0.3 5000 0.3 5000
0 0.15 0.15 3500 0.15 5000 0.15 5000

Table 10.1: Generated frame times and LED powers for an 8-bit image with a 38.4 ms display time.
All times are in milliseconds and all currents are in milliamps.

significant bitplanes is greater than or equal to the minimum frame time of the DMD (i.e. ≥ 150 µs for
the DMD 4500 device). The general principle of the proportional frame times for each of the bitplanes of
an 8-bit image is shown in Figure 10.1. Each of the rectangles represents a bitplane of the 8-bit image,
and is sized proportional to the amount of time that it will be displayed for by the DMD. The most
bitplane at bit 7, b7, is first with the longest time, followed by bit 6 which is half the time of b7, then bit
5 which is half the time of b6, and so on down to the least significant bit b0 which is the smallest unit of
time.

The specific frame times for each of the 8 bitplanes of an 8-bit image where only DMD frame times are
used to modulate gray levels is shown in Table 10.1. Notice that the LED times and currents are set
to the maximum possible power to fill the entire frame time since they are not needed to achieve the
desired 8-bit image display time. Also notice that the LED power for each bitplane is precisely 1/2 the
LED power of the previous bitplane so that the most significant frame (bitplane) has 1/2 of the total
image power whereas the least significant frame (bitplane) has 1/256 of the total power.

10.1.4 Grayscale Display: Frame Time and LED Power Control

When higher speed grayscale display times are needed it will be necessary to reduce LED times and LED
currents to achieve linear gray values for low order bitplanes. With a minimum DMD frame time of 0.150
ms, which is currently the minimum data load time for the DMD 4500 device, the shortest possible 8-bit
grayscale display time is therefore 38.4 ms, as shown in Table 10.1. The example in Table 10.2 shows
the frame times and LED powers (time × current) for a 10.0 ms total grayscale display time. Since this
is below the minimum 38.4 ms some of the LED powers must be reduced below their maximum possible
values. In this example, the most significant bitplanes (from bitplane numbers 2 to 7) have frame times
above the minimum frame time of 0.150 ms and the LED times are set to the entire frame time. However,
the lower order bitplanes (bitplane numbers 0 and 1) have LED on times which are a fraction of the
frame time. Note that this preservation of gray level linearity therefore comes at the cost of slightly
reduced total light output for the entire grayscale image.

We have so far seen an example in Table 10.1 where frame times alone are sufficient to achieve linear
8-bit grayscale output, and an example in Table 10.2 where frame time and LED on time are used to

Ajile Suite Software Users Guide
2025-02-12

88

Chapter 10. Color and Grayscale Display

Bitplane
Number

Frame
Time

Red
LED
Time

Red
LED
Current

Green
LED
Time

Green
LED
Current

Blue
LED
Time

Blue
LED
Current

7 4.927 4.927 3500 4.927 5000 4.927 5000
6 2.464 2.464 3500 2.464 5000 2.464 5000
5 1.232 1.232 3500 1.232 5000 1.232 5000
4 0.616 0.616 3500 0.616 5000 0.616 5000
3 0.308 0.308 3500 0.308 5000 0.308 5000
2 0.154 0.154 3500 0.154 5000 0.154 5000
1 0.15 0.077 3500 0.077 5000 0.077 5000
0 0.15 0.038 3500 0.038 5000 0.038 5000

Table 10.2: Generated frame times and LED powers for an 8-bit image with a 10.0 ms display time.
All times are in milliseconds and all currents are in milliamps.

Bitplane
Number

Frame
Time

Red
LED
Time

Red
LED
Current

Green
LED
Time

Green
LED
Current

Blue
LED
Time

Blue
LED
Current

9 4.774 4.774 3500 4.774 5000 4.774 5000
8 2.387 2.387 3500 2.387 5000 2.387 5000
7 1.194 1.194 3500 1.194 5000 1.194 5000
6 0.597 0.597 3500 0.597 5000 0.597 5000
5 0.298 0.298 3500 0.298 5000 0.298 5000
4 0.15 0.149 3500 0.149 5000 0.149 5000
3 0.15 0.075 3500 0.075 5000 0.075 5000
2 0.15 0.037 3500 0.037 5000 0.037 5000
1 0.15 0.019 3500 0.019 5000 0.019 5000
0 0.15 0.01 3262 0.01 4660 0.01 4660

Table 10.3: Generated frame times and LED powers for an 10-bit image with a 10.0 ms display time.
All times are in milliseconds and all currents are in milliamps.

achieve linear 8-bit grayscale at a slightly higher speed. For even higher speeds and/or bit-depths it may
also be necessary to reduce LED currents to allow for a greater range of gray levels. The example in
Table 10.3 shows the frame time, LED time and LED current used to display a 10-bit grayscale image
with a 10 ms display time. In this example, bitplane numbers 1 through 9 are displayed using only the
combination of frame time and LED on time to achieve the required gray levels as before. However for
bitplane number 0 the LED currents are reduced as well since in this system the LED times cannot be
reliably set below the minimum value of 0.01 ms.

10.1.5 Grayscale Display Optimization

As may be evident by the grayscale examples seen in Table 10.1, 10.2 and 10.3, determining the optimal
frame time, LED on time and LED current for each of the n bitplanes of an n-bit image in order to
display the image with the correct timing is not a trivial task. Fortunately the Ajile software suite
provides functions to automatically optimize the frame times and LED powers for a given grayscale or
color display time. We will see how to use these functions later in this Chapter, but for now we will just
discuss that there are four different parameters that may be optimized, which are under user control as
to whether or not they should be used.

Frame Time Adjustment

This is the first parameter that will be adjusted by the Grayscale display optimization functions. Ad-
justing the frame time of the DMD to obtain different gray levels is by far the most preferable option
since the LED power is held constant for the entire frame and we get the highest possible light output

Ajile Suite Software Users Guide
2025-02-12

89

Chapter 10. Color and Grayscale Display

Bitplane
Number

Frame
Time

Red
LED
Time

Red
LED
Current

Green
LED
Time

Green
LED
Current

Blue
LED
Time

Blue
LED
Current

7 0.25 0.25 3500 0.25 5000 0.25 5000
6 0.15 0.125 3500 0.125 5000 0.125 5000
5 0.15 0.063 3500 0.063 5000 0.063 5000
4 0.15 0.031 3500 0.031 5000 0.031 5000
3 0.15 0.016 3500 0.016 5000 0.016 5000
2 0.15 0.01 2737 0.01 3910 0.01 3910

Table 10.4: Generated frame times and LED powers for an 8-bit image with a 1.0 ms display time. Note
that only the most significant 6 bitplanes are displayed in order to meet the 1.0 ms timing requirement.
All times are in milliseconds and all currents are in milliamps.

efficiency.

LED On Time Adjustment

When frame time adjusted alone is not enough to meet display timing requirements due to the fact that
the frame times would need to fall below the minimum permissible frame times, the next most ideal
parameter to adjust is the LED on time as a fraction of the frame time. LED on time is the next most
preferable free parameter since adjusting LED time is still guaranteed to be very linear with light output
and does not affect the temperate and/or wavelength characteristics of the LEDs (as adjusting LED
currents would).

LED Current Adjustment

While LED on times can be set as a fraction of the minimum frame time, there is however a minimum
permissible LED on time below which the LEDs cannot be reliably switched on at their desired currents.
This minimum LED on time is currently 10 µs. When adjusting LED on times alone would result in
times below the minimum LED time the grayscale display optimizer can adjust LED currents. This
optimization will only occur when frame times and LED times are not sufficient for the desired n-bit
grayscale display time since LED light output is not completely linear with drive current and also LED
temperatures and wavelengths can be affected by current. However, this LED current setting per bitplane
is still an option to display grayscale images with either very high bit depths or high speeds.

Dropping Bitplanes Adjustment

When it simply is not possible to achieve the desired grayscale display time with the given bit depth, the
last resort which may or may not be feasible for the given application is to allow the grayscale display
optimizer to drop the lower order bitplanes from the image. For example, if we want to display an 8-bit
grayscale image with a 1 ms display time this is simply not possible with the amount of frame time, LED
time and LED current adjustment available in the DMD 4500 controller. If we allow dropping bitplanes
however, we would could achieve the 1 ms grayscale display time if we display the image using only 6
bits instead of 8 (i.e. a 6-bit grayscale image.) The optimized times and currents for such a 6-bit image
are shown in Table 10.4 where only bitplanes 2 through 7 of the 8-bit image are displayed in the 1 ms
total display time.

10.1.6 Color Display

Up until this point we have looked solely at splitting grayscale images into bitplanes and displaying them.
Displaying RGB color images is identical to displaying three separate grayscale images, one for each color
channel. Essentially the three color channels are split into three grayscale images for each channel, then
the grayscale optimization for each of the three color channels is handled independently in the exact
same way as standard grayscale images. The bitplanes for all three color channels are combined into a
single sequence item with only one LED powered on for each of the three color channels.

Ajile Suite Software Users Guide
2025-02-12

90

Chapter 10. Color and Grayscale Display

Bitplane
Number

Frame
Time

Red
LED
Time

Red
LED
Current

Green
LED
Time

Green
LED
Current

Blue
LED
Time

Blue
LED
Current

R7 1.458 1.458 3500 0 0 0 0
G7 1.458 0 0 1.458 5000 0 0
B7 1.458 0 0 0 0 1.458 5000
R6 0.729 0.729 3500 0 0 0 0
G6 0.729 0 0 0.729 5000 0 0
B6 0.729 0 0 0 0 0.729 5000
R5 0.364 0.364 3500 0 0 0 0
G5 0.364 0 0 0.364 5000 0 0
B5 0.364 0 0 0 0 0.364 5000
R4 0.182 0.182 3500 0 0 0 0
G4 0.182 0 0 0.182 5000 0 0
B4 0.182 0 0 0 0 0.182 5000
R3 0.15 0.091 3500 0 0 0 0
G3 0.15 0 0 0.091 5000 0 0
B3 0.15 0 0 0 0 0.091 5000
R2 0.15 0.046 3500 0 0 0 0
G2 0.15 0 0 0.046 5000 0 0
B2 0.15 0 0 0 0 0.046 5000
R1 0.15 0.023 3500 0 0 0 0
G1 0.15 0 0 0.023 5000 0 0
B1 0.15 0 0 0 0 0.023 5000
R0 0.15 0.011 3500 0 0 0 0
G0 0.15 0 0 0.011 5000 0 0
B0 0.15 0 0 0 0 0.011 5000

Table 10.5: Generated frame times and LED powers for an 8-bit, 3-channel color image with a 10.0 ms
display time. All times are in milliseconds and all currents are in milliamps.

An example bitplane timing of an 8-bit, 3 channel RGB color image is shown in Table 10.5. Notice
that to obtain the three color channels the bitplanes alternate between the red, green and blue bitplanes
sequentially, denoted by Ri, Gi and Bi for the i-th bitplane of the red, green and blue channels respec-
tively. Also note that for each of bitplanes of any given channel, only the LED for that corresponding
channel is enabled (with a non-zero LED time and current) while the other two channels are off.

10.2 Displaying Color and Grayscale Images

The first step to working with color and grayscale images is to split them into 1-bit bitplanes so that
they are compatible with the native format of the DMD.

10.2.1 Displaying Color and Grayscale Images in the GUI

Displaying color and grayscale images in the GUI involves two steps: first we import the color or grayscale
image into the project, and second we assign the image to a sequence item in a sequence so that it can
be displayed.

Importing Color and Grayscale Images

Importing color and grayscale images in the GUI is nearly identical to the steps which we have already
seen in Section 5.3.1. The only thing to keep in mind is to select the ‘Output Image Type’ in the drop
down menu to be the output image format that is desired. That is, select ‘8-Bit Grayscale’ to import the
image as grayscale or ‘24-Bit Color’ to import the image as color, as is shown in Figure 10.2. At this time

Ajile Suite Software Users Guide
2025-02-12

91

Chapter 10. Color and Grayscale Display

Figure 10.2: Screenshot of selecting the output image type in the Image Editor of the Ajile GUI.

the GUI only support 8-bit grayscale and 24-bit color (i.e. 3 channels of 8-bits each). For non-standard
bit depths to SDK will need to be used, see the next section.

Creating Color and Grayscale Sequence Items

With grayscale or color images loading into the project, the next step is to assign the images to sequence
items in a sequence. Previously in Chapter 6 we showed how to assign binary (1-bit) images to individual
frames in a sequence. Color and grayscale images on the other hand are assigned to sequence items rather
than frames, the reason being that color and grayscale images are actually composed of several frames,
one for each bitplane of the composite image.

To create a color or grayscale sequence item for display we first open the Sequence Editor and create a
new sequence and an empty sequence item (see Chapter 6). We then assign an image to the sequence
item by right clicking on the sequence item which will display the image and selecting ‘Add/Change
Image’ from the pop-up menu, as shown in Figure 10.3. The Image Selection dialog will then appear, as
shown in Figure 10.4. Select a color or grayscale image and click OK. This will assign the image to the
sequence item and automatically creates frames within the sequence item for each of the corresponding
bitplanes of the image. As shown in Figure 10.5, the image thumbnail of the sequence item is updated
to show the color or grayscale image.

Note that by default the color or grayscale sequence items are shown in collapsed mode, meaning that
the frames within them are hidden. If needed, the sequence item can be expanded (by clicking on the
arrow to the left of the sequence item) and the list of frames for each of the bitplanes are shown beneath
the sequence item. The frames are automatically created with the lighting and timing parameters needed
to correctly display the composite image.

The total frame time of the sequence item (and thus the total time that the color/grayscale image will
be displayed) is shown under the Frame Time column of the sequence editor. This frame time can be
edited to set the target time for which the sequence item / image will be displayed. A specific display
time can be entered here and the frame times within the sequence item will automatically be adjusted

Ajile Suite Software Users Guide
2025-02-12

92

Chapter 10. Color and Grayscale Display

Figure 10.3: Screenshot of setting the color or grayscale image of a sequence item by right-clicking on
its row and selecting ‘Add/Change Image’.

to give the new time for the sequence item. Special values of ‘-1’ and ‘0’ can also be entered, and are
described by the tool-tip shown in Figure 10.5. A setting of ‘0’ will give the sequence item the minimum
possible display time and allow LED on times and currents to be modulated below their maximums,
whereas a setting of ‘-1’ will give the sequence item the minimum possible display time while keeping
the LEDs at their maximum outputs.

10.2.2 Displaying Color and Grayscale Images in the SDK

There are three possible ways to create color and grayscale sequence items for display depending on user
requirements. They can be automatically created from standard image file formats (e.g. ‘.png’, ‘.bmp’,
etc.) which are located on disk, they can be automatically created from existing Ajile Images which reside
in program memory, or they can be created with full user control over the splitting of composite images
into their individual bitplanes and the assignment of bitplanes to color/grayscale sequence items.

Creating Color and Grayscale Sequence Items From Image Files

The easiest way to create color or grayscale sequence items from the SDK is to simply specify an input
image filename and let the SDK automatically split the image into its bitplanes and assign the bitplanes
to frames in a sequence item with optimized frame timing and lighting parameters. To accomplish this
there are functions available within the Project object to facilitate converting color and grayscale images
into bitplanes and sequence items which can be displayed by the DMD device. These functions are

Project.CreateGrayscaleSequenceItem FromImage(),
Project.CreateGrayscaleSequenceItemWithTime FromImage(),

for grayscale conversion, and

Project.CreateColorSequenceItem FromImage(),
Project.CreateColorSequenceItemWithTime FromImage(),

Ajile Suite Software Users Guide
2025-02-12

93

Chapter 10. Color and Grayscale Display

Figure 10.4: Screenshot of setting the color or grayscale image of a sequence item by right-clicking on
its row and selecting ‘Add/Change Image’.

Ajile Suite Software Users Guide
2025-02-12

94

Chapter 10. Color and Grayscale Display

Figure 10.5: Screenshot of a color image attached to a sequence item.

for color conversion. For the ‘WithTime’ versions of the function a target total time for the color/grayscale
sequence item is specified, whereas for the other versions of the function the minimum possible total time
for the sequence item will be used. Note that the target total time is not necessarily the same as the
display time of the color or grayscale image, but instead defines the refresh rate of the image. The
display time of the image can be configured by setting the repeat count of the color/grayscale sequence
item.

A simple example demonstrating the use of the color and grayscale sequence item creation functions is
shown in Listing 10.1 in Python and in Listing 10.2 in C++. The example function takes as arguments
a project, sequence ID, image ID, input image filename and optional arguments to control which of the
four color or grayscale functions listed above will be used. After calling the function the input project
will have a color or grayscale sequence item added to it, along with the list of bitplanes for that image.
An optional total frame time and display time can also be specified. The total frame time control how
the sequence item is constructed to get this target time, whereas the display time controls the sequence
item repeat count so that it is displayed for the correct amount of time. Note that more advanced usage
of these functions is possible - please see the SDK reference manual for further details.

Ajile Suite Software Users Guide
2025-02-12

95

Chapter 10. Color and Grayscale Display

def addCompositeToProject(myProject, sequenceID, imageID, filename, color, frameTimes=−1, displayTime=−1):
2 # define an empty sequence item and list of images which will be populated with the new frames and bitplanes

sequenceItem = SequenceItem(sequenceID)
4 imageBitplanes = ImageList()

if color :
6 if frameTimes > 0:

create a sequence item to display the 24 bitplanes of a color image with the given timing
8 myProject.CreateColorSequenceItemWithTime FromFile(sequenceItem, imageBitplanes, filename, imageID,

FromMSec(frameTimes))
else :

10 # create a sequence item to display the 24 bitplanes of a color image with the default minimum timing
myProject.CreateColorSequenceItem FromFile(sequenceItem, imageBitplanes, filename, imageID)

12 else :
if frameTimes > 0:

14 # create a sequence item to display the 8 bitplanes of a grayscale image with the given timing
myProject.CreateGrayscaleSequenceItemWithTime FromFile(sequenceItem, imageBitplanes, filename,

imageID, FromMSec(frameTimes))
16 else :

create a sequence item to display the 8 bitplanes of a grayscale image with the default minimum timing
18 myProject.CreateGrayscaleSequenceItem FromFile(sequenceItem, imageBitplanes, filename, imageID)

set the display time of this sequence item by setting its repeat time
20 sequenceItem.SetRepeatTimeMSec(displayTime)

add the image bitplanes to the project
22 myProject.AddImages(imageBitplanes)

add the sequence item to the project
24 myProject.AddSequenceItem(sequenceItem)

Listing 10.1: Python example of creating color and grayscale bitplanes and sequence items from an input
color or grayscale file, and adding them to the project.

void addCompositeToProject(Project& myProject, u16 sequenceID, u16 imageID, const char∗ filename, bool color, int
frameTimes=−1, int displayTime=−1) {

2 // define an empty sequence item and list of images which will be populated with the new frames and bitplanes
SequenceItem sequenceItem(sequenceID);

4 vector<Image> imageBitplanes;
if (color)

6 if (frameTimes > 0)
// create a sequence item to display the 24 bitplanes of a color image with the given timing

8 myProject.CreateColorSequenceItemWithTime FromFile(sequenceItem, imageBitplanes, filename, imageID,
FromMSec(frameTimes));

else
10 // create a sequence item to display the 24 bitplanes of a color image with the default minimum timing

myProject.CreateColorSequenceItem FromFile(sequenceItem, imageBitplanes, filename, imageID);
12 else

if (frameTimes > 0)
14 // create a sequence item to display the 8 bitplanes of a grayscale image with the given timing

myProject.CreateGrayscaleSequenceItemWithTime FromFile(sequenceItem, imageBitplanes, filename,
imageID, FromMSec(frameTimes));

16 else
// create a sequence item to display the 8 bitplanes of a grayscale image with the default minimum

timing
18 myProject.CreateGrayscaleSequenceItem FromFile(sequenceItem, imageBitplanes, filename, imageID);

// set the display time of this sequence item by setting its repeat time
20 sequenceItem.SetRepeatTimeMSec(displayTime);

// add the image bitplanes to the project
22 myProject.AddImages(imageBitplanes);

// add the sequence item to the project
24 myProject.AddSequenceItem(sequenceItem);
}

Listing 10.2: C++ example of creating color and grayscale bitplanes and sequence items from an input
color or grayscale file, and adding them to the project.

Ajile Suite Software Users Guide
2025-02-12

96

Chapter 10. Color and Grayscale Display

10.3 Creating High Bit-Depth (>8-bit) Color and Grayscale Se-
quence Items

Since the Ajile suite allows for controlling the DMD in its native 1-bit format and specifying frame
times and LED settings on a per frame basis, it is possible to display high bit depth images using the
Ajile DMD controller since there is no constraint on bit depth as there is with traditional video-based
controllers. The only real constraint on bit depth is the required total time for all n bitplanes of an n-bit
image to be displayed, which is limited by the minimum possible frame time of the DMD and minimum
possible LED times and currents.

The Ajile SDK fully supports creating color and grayscale sequence items with arbitrary bit depths, such
as 10-bit, 12-bit, 16-bit and beyond. Of course, for higher bit depth images such as 12-bit and above the
minimum total time for all frames of the image to be displayed may be too long to be feasible for certain
applications. Currently however 10-bit color can be feasibly displayed at over 80 frames per second
and 10-bit grayscale can be displayed at over 240 Hz, with higher bit depths running proportionally
slower.

The Ajile SDK interface which facilitates displaying color and grayscale images which are greater than
8 bits in depth is nearly identical to that which has already been shown. The only real differences are
that input images of greater than 8-bit deep must be supplied (i.e. 16-bit images), and the resulting list
of bitplanes will have more than 8 bitplanes.

10.4 Optimizing the Output Linearity of Color and Grayscale
Images

As was discussed earlier in this chapter, displaying multi-bit images with the DMD (which is natively
a 1-bit device) is accomplished by displaying the least significant bitplane for 1 time unit and each
successive bitplane number i for 2i time units. When DMD frame time control alone is sufficient to
achieve the required bit depth and frame rate then the light output from the DMD is very much linearly
proportional to the image pixel intensity values. In other words, an increase of 1 pixel intensity counts
results in an increase of 1 light output unit and an increase of 100 pixel intensity counts results in an
increase of 100 light output units.

Using frame time control only to achieve n-bit color and grayscale puts a significant limitation on the
minimum image display rate however. To overcome this, LED time control below the minimum bitplane
frame time must be used. This means that the LEDs are no longer on for 100% of the time and are
switched on and off at high speeds in order to increase bit depths and frame rates. While this does give
the desired effect of increasing color and grayscale display speed and/or bit depth, it has the unfortunate
draw back that LED output is no longer perfectly linear with pixel intensity, due to complex thermal-
dependant effects on the LED die.

Fortunately the Ajile software suite is equipped with a way to correct for non-linear light output with
pixel intensity. The correction is a list of gain values, one gain value for each bitplane and color channel.
When supplied, the frame time and/or LED on time for the given bitplane and color channel is multiplied
by the gain value for that bitplane and channel. As an example, Table 10.6 shows the frame times and
LED settings for the green channel of an 8-bit grayscale image. In addition, gain values for each of the 8
bitplanes of the green channel are specified. The resulting frame time and LED time after gain correction
are shown in the final column.

The graphs in Figure 10.6 are a further demonstration of the usefulness of the gain correction settings.
For these graphs, the pixel intensity of a 10-bit image was varied from 0 to 1023 (i.e. 210−1) and the light
output from the resulting projected image was measured by a light meter. The graph on the left hand side
shows the image pixel intensity value versus the light output when no gain corrections were applied (that
is, a gain value of 1.0 was applied to each bitplane). Notice that there are steps resulting in a non-straight
line. The graph on the right hand side show the light output when a set of gain corrections were applied.
We see on the right that the relationship between pixel intensity and light output has been successfully

Ajile Suite Software Users Guide
2025-02-12

97

Chapter 10. Color and Grayscale Display

Bitplane
Number

Frame
Time

Green
LED
Time

Green
LED
Current

Gain
Setting

Gain
Cor-
rected
Frame
Time

Gain
Cor-
rected
LED
Time

7 4.927 4.927 5000 1.1 5.410 5.410
6 2.464 2.464 5000 1.3 3.203 3.203
5 1.232 1.232 5000 1.2 1.478 1.478
4 0.616 0.616 5000 1.35 0.832 0.832
3 0.308 0.308 5000 1.3 0.400 0.400
2 0.154 0.154 5000 1.25 0.193 0.193
1 0.15 0.077 5000 1.1 0.15 0.085
0 0.15 0.038 5000 1.0 0.15 0.038

Table 10.6: Generated frame times and LED powers for an 8-bit image with a 10.0 ms display time
after applying a set of gain corrections per bitplane.

Figure 10.6: Graph of light output with varying pixel intensity.

Ajile Suite Software Users Guide
2025-02-12

98

Chapter 10. Color and Grayscale Display

linearized after applying gain corrections per bitplane. The gain values applied in this example, from most
significant to least significant bit, were 1.410, 1.396, 1.40, 1.242, 1.558, 1.586, 1.53, 1.62, 1.259, 1.0.

The function Project.SetGrayscaleColorGain() is used to set the gain setting for each channel and
bitplane. The functions takes as arguments a list of floating point gain values, one for each bitplane for
the output image, along with the channel number to be set. Determining the correct values for the gain
settings must be done by measurement with a suitable light meter. If needed, contact Ajile support for
more information on this advanced feature.

10.5 Optimizing Color and Grayscale for Human Display

When displaying color and grayscale for non-human display purposes (e.g. when projected images are
observed by a camera, or when images do not need to be observed at all), then the problem of total
integration time of the multi-bit image by the DMD is not terribly important. However, when the images
must be projected for human display then a number of subtleties can arise which can be perceived as
‘artifacts’ of the DMD display.

The most noticeable display ‘artifact’ is the apparent flickering of the DMD image as the multiple
bitplanes are switched by the DMD at high speed. There are two ways that this flickering artifact can
be reduced or eliminated.

1. Increasing the color or grayscale frame rate.

2. Split bitplanes which are displayed for longer periods of time into shorter times, and interleave
bitplanes at high speeds.

If performing the splitting and interleaving of bitplanes (which is highly recommended for human display),
then the ordering of the bitplanes can also have an impact on display artifacts.

The splitting and interleaving of bitplanes into smaller sub-bitplanes is facilitated by the Ajile SDK and
GUI. This splitting is done automatically by the Ajile GUI when a special setting of ‘-1’ is specified
for the sequence item frame time (see Figure 10.5). In the SDK, the splitting is controlled by specify-
ing the maxBitplaneTime in the CreateColorSequenceItem() and CreateGrayscaleSequenceItem()

functions. See the Ajile SDK reference manual for details on its usage. The ordering of the frames within
color or grayscale sequence items are currently not paramaterized by the SDK, but frames can be easily
reordered and customized by user applications based on specific needs.

Ajile Suite Software Users Guide
2025-02-12

99

Chapter 11

Camera Control

Ajile cameras use the same project and sequence structure as the DMD components seen previously, and
so offer the same level of frame by frame control and programming interface. The real difference between
a camera component and a DMD component is that for the camera the images are not loaded from the
host PC and sent to the device, but instead they are captured by the device and sent back to the host
PC.

This chapter describes the capabilities of Ajile camera components, and the specific interface details for
retrieving captured images from the camera.

11.1 Allocating Images

As with DMD components, camera components make use of the random access image store in the project
structure which was already seen in Chapter 5. Images must be created and added to the project by the
user as before, however the image data itself will typically be empty (i.e. zero size) since it will loaded
with captured camera image data when a camera exposure has completed. Images are therefore slots of
memory that are reserved ahead of time before running the capture sequence, and the camera will store
its captured images at these image slots corresponding to their image ID.

To create camera images, we need to set a number of the Image properties which were shown in Table
5.1. Here we show in Table 11.1 the Image members which must be set, and their typical values for the
CMV4000 and CMV2000 camera sensors.

Creating images for the camera is the same as was shown in Chapter 5. We show in Listing 11.1 two ways
of creating images that may be used by the camera in C++. The first is the fully manual way where
the image width, height, bit depth and number of channels are all specified. Note that constants which

Name Possible Values
ID 1 to 65535
Width 2048
Height 1 to 2048 (CMV4000), 1 to 1088 (CMV2000)
Bit Depth 10, 8
Number of Channels 1
Image Major Order ROW MAJOR ORDER=1
Image Name Optional and unused
Filename Unused
Memory Address 0 (will be non-zero after readout)
Size 0 (will be non-zero after readout)

Table 11.1: Image members that must be configured for a camera

100

Chapter 11. Camera Control

Figure 11.1: A view of the image Manager in the Ajile GUI.

are defined in the Ajile SDK (in camera constants.h) are used for the width and height. The second
way is to use a helper function, Image.SetImagePropertiesForDevice(), which automatically sets all
image properties to match the given device type. Note also that the image size is set to 0 in the host
user application. This is because no image data is associated with the image yet. After a camera image
capture sequence has completed and the camera images have been retrieved from the device (which we
will see in the next sections), the size and memory address will be non-zero.

1 // create camera image with ID 1 for CMV4000 manually
Image myImage1;

3 myImage1.SetID(1);
myImage1.SetBitDepth(10);

5 myImage1.SetNumChannels(1);
myImage1.SetWidth(CMV4000 IMAGE WIDTH MAX); // 2048

7 myImage1.SetHeight(CMV4000 IMAGE HEIGHT MAX); // 2048
myImage1.SetSize(0);

9 // create camera image with ID 2 for CMV4000 using helper function
Image myImage2(2);

11 myImage2.SetImagePropertiesForDevice(CMV 4000 MONO DEVICE TYPE);
Project myProject;

13 myProject.AddImage(myImage1);
myProject.AddImage(myImage2);

Listing 11.1: C++ example of creating two new Image Objects that may be used with a CMV4000
camera component.

11.1.1 Allocating Images in the GUI

The Image Manager is used to allocate camera images in the GUI. A view of the Image Manager can
be seen in Figure 11.1. The Image Manager displays the total memory usage of allocate images and
allows the user to allocate a new image using the ’Camera Image Allocation’ section. The width, height
and bit depth are adjustable properties. The width is fixed for certain devices types for compatibility
reasons. Pressing the ’Allocate Image’ button allocates a new image with the first available image ID.
The allocated camera images and the DMD images can be seen in the image list in the Image Manager
and the image pane in the Image Editor.

Ajile Suite Software Users Guide
2025-02-12

101

Chapter 11. Camera Control

Figure 11.2: A view of the image selector for sequence items and frames.

11.2 Creating Sequences

When the images are added to the project the camera will now have a place to store its image data after
the captures have been completed. What is still needed is a way to specify the camera exposures and
other capture properties of the camera. This is done with Sequences, as were shown in Chapter 6. Most
of the properties of interest are in the Frame object which were shown in Table 6.3. The Frame Image
ID specificies which of the Image object slots should be used to store the captured camera image data
for that frame. The Frame Time sets the exposure time for that frame. All frame settings, including
the additional frame parameters of trigger settings and imaging parameters, can be changed on a frame
by frame basis. For example, it is possible to have a sequence with as many different exposure times as
desired in order to implement a high dynamic range capture mode.

11.2.1 Creating Sequences in the GUI

Sequences in the GUI are created as described in the sequences Chapter 6. With camera seqeunces, it
is also possible to allocate camera images directory in a frame or sequence item by right-clicking the
row and pressing ’Add/Change Image’. This will bring up a dialog for selecting the image as seen in
Figure 11.2. This allows the user to change the image or allocate a new image directly in the Sequence
Editor.

Ajile Suite Software Users Guide
2025-02-12

102

Chapter 11. Camera Control

Figure 11.3: A view of the run Environment to control the device components.

11.3 Running Camera Capture Sequences

Running camera sequences is just as was shown in Chapter 9. We connect to the device with AjileSystem.

StartSystem(), load the project onto the device with AjileSystem.GetDriver().LoadProject(),
and start the sequence with AjileSystem.GetDriver().StartSequence(). We then monitor the run-
ning status of the device with AjileSystem.GetDeviceState() or read the SequenceStatusValues with
AjileSystem.GetDriver().GetNextSequenceStatus() to check when the sequence has completed and
all camera exposures have finished.

Note that it is possible to continuously capture images by setting the sequence or sequence item re-
peat count to zero, which means loop forever until StopSequence() is called. When combined with
RetrieveImage() in the next secion, this is how one would implement a live camera image preview,
which is very useful for camera setup steps such as moving the camera into the correct position on the
scene and focusing the lens.

11.3.1 Running Camera Capture Sequences in the GUI

Running a camera capture sequence is accomplished in the Run Environment. The Run Environment
allows the users to: connect to hardware; view connected components; load projects; run, stop and
park components; change the sequences and their start order; and retrieve, view and save camera im-
ages.

First the hardware must be connected to the GUI by pressing the ’Connect to HW’ button seen in
Figure 11.3. Next the sequences must be loaded by pressing the ’Load’ button and subsequently the
’Run’ button located in the bottom right of the Run Environment. The status light indicator will change
to blue while the sequences are running. More information about running sequences is available in the
previous Chapter 6. The sequence can be stopped by pressing the ’Stop’ button where the ’Run’ button
was previously located.

Ajile Suite Software Users Guide
2025-02-12

103

Chapter 11. Camera Control

11.4 Retrieving Images

When camera exposures take place after a camera Frame has completed, the image data from the
camera sensor will be stored at the Image memory address with the corresponding Image ID for the
Frame. The image data will reside on the device, and is not automatically transferred back to the
host PC. In order for the host PC to retrieve the camera images from the device so that they can be
displayed, stored and processed, a function is provided to request images from the device. This function
is ControllerDriver.RetrieveImage(). Images can be retrieved by specifying the Image ID, or they
can be retrieved by specifying the Sequence, Sequence Item and Frame Index of a given frame, which
may be useful if a Sequence Status is being used to know which camera exposure has just completed. An
example of using RetrieveImage is shown in Listing 11.2, where we show retrieving an image based on
the Frame index first when a sequence status message has been receive. Then we show the simpler way
of retrieving an image by simply specifying its Image ID. The following items should be paid attention
to in the example:

• We wait for a sequence status message before retrieving the image from the device to make sure
that the camera exposure for that frame is complete, otherwise undefined memory will be returned
to the host instead of valid image data.

• The Sequence Item and Frame indices used in RetrieveImage() have ‘1’ subtracted from them
since the indexing of the Sequence Item and Frame in the SequenceStatusValues begins at 1 (i.e.
are 1-indexed), but the indexing within a SequenceItem or Frame begins at 0 (i.e. are 0-indexed)
within a Project, and RetrieveImage() expects the latter (0-indexed).

• We check to make sure that the image has a valid width and height before processing it. If
RetrieveImage() fails to return a valid image due to an error condition these will be 0.

• We save the image with Image.WriteToFile() with an output bit depth of 16-bit. Here we assume
that a 10-bit image is being captured (CMV4000 default), which can we convert to 16-bit so that
standard image formats (e.g. .png) can be used.

1 if (!ajileSystem.GetDriver()−>IsSequenceStatusQueueEmpty(cameraIndex)) {
// determine the last frame that was captured

3 SequenceStatusValues sequenceStatus =
ajileSystem.GetDriver()−>GetLatestSequenceStatus(cameraComponentIndex);

5 // retrieve the image based on the frame index
const aj :: Image& ajileImage = ajileSystem.GetDriver()−>RetrieveImage(

7 aj :: RETRIEVE FROM FRAME, 0, sequenceStatus.FrameIndex()−1,
sequenceStatus.SequenceItemIndex()−1, sequenceStatus.SequenceID());

9 // save the image to file
if (ajileImage.Width() > 0 && ajileImage.Height() > 0)

11 ajileImage.WriteToFile(filename, 16);
}

13 // retrieve the image based on the image ID
const aj :: Image& ajileImage = ajileSystem.GetDriver()−>RetrieveImage(

15 aj :: RETRIEVE FROM IMAGE, 1);
if (ajileImage.Width() > 0 && ajileImage.Height() > 0)

17 ajileImage.WriteToFile(filename, 16);

Listing 11.2: C++ example of retrieving images from the device.

11.4.1 Retrieving Images in the GUI

Retrieving images in the GUI is accomplished in three different ways, all of which lie in the ’Camera
Image Display’ tab of the Run Environment. Figure 11.4 provides an overview of the ’Camera Image
Display’ tab All three of the methods are accessed through the Camera Image Display tab in the Run
Environment as seen in Figure 11.5. The next three paragraphs will describe each of the possible paths
for retrieving images.

The first method is to retrieve a single image by index. The image index can be selected using the drop-
down in Image Retrieval section of the Camera Image Display tab (part of the Run Environment). All
camera images that appear in frames in the sequence will be displayed. ’Latest’ will also be an option.

Ajile Suite Software Users Guide
2025-02-12

104

Chapter 11. Camera Control

Figure 11.4: A screenshot of the camera image display tab of the Run Environment.

Figure 11.5: A screenshot of the image retrieval section of the Run Environment.

Ajile Suite Software Users Guide
2025-02-12

105

Chapter 11. Camera Control

Pressing the ’Retrieve’ button will retrieve one image from the device at the given index. If ’Latest’ is
used, the most recently captured image will be returned based on sequence status values. The retrieved
image will be displayed in the Camera Image Display viewer. Here the image can be viewed and pixel
values can be examined. The retrieved image will also be added to the Images pane. Note that only one
image for each ID will be stored in the image pane, to retain images they should be saved to disk.

The second option is retrieving all images. This method will get one image from each image index -
timing out after 5s for each image index. The ’Retrieve All’ button initiates the retrieval process. The
images will populate the image pane and the last image will be displayed in the viewer. The image ID
of the displayed image can be seen underneath the image viewer.

The final method is to continuously retrieve images. Continuous retrieval uses the image index selected
in the drop-down as previously described in the first method. However this method will continue to
retrieve until it is stopped. Continuous retrieval is started by pressing the ’Continuous Retrieve’ button
and stopped by pressing it again.

11.5 Image Storage in the GUI

Camera image storage is available in the Image Storage section of the Run Environment as seen in
Figure 11.6. The available file formats can be seen in the ’File Format’ drop-down menu and apply to all
methods of file storage. The methods can be generalized in two categories: manual filename specification
or the filename convention. The ’Save Current As’ button can be used to save a single image by manually
specifying a filename. The alternative option is to specify a filename convention and use ’Save Current’
to save a single image or ’Save All’ to save all images. The filename convetion is used to specify a naming
convention for saving files such as the Image ID, current time, current date or project name. When an
image is saved it will use the specified convention and overwrite to the specified filename and path.
The output folder can be specified to any folder and will default to the project path. The ’Auto-Save’
checkbox provides the user the option to automatically save any retrieved or acquired image using the
specified file name convention. Images on disk can be viewed in the Image File Explorer pane of the Run
Environment’s Camera Image Display tab. Double-clicking these images brings them into the viewer.
By default, the current session’s images will be displayed in the Image File Explorer but all images can
be displayed by sliding the ’Display All Image’ slider.

11.6 Acquiring Images

Waiting for sequences of image captures to complete then reading them out with RetrieveImages() is the
simplest way to grab images, however for latency reasons we may want to have the captured camera im-
ages automatically returned to the PC immediately when they are captured so that they can be processed
by the host application as soon as possible. Accomplishing this is done by the AcquireImages interface.
The concept for acquiring images is the user application requests for the next captured images to be au-
tomatically sent to the PC as soon as they are captured by calling ContollerDriver.AcquireImages()

and passing in the requested number of images. Typically this will be called before StartSequence()

so that all images of a sequence are returned to the host. When the sequence is started and camera
exposures take place, the captured images are sent to the host PC automatically as soon as possible,
and they are added to a FIFO queue of images which resides on the host PC inside the Ajile driver,
called the Acquired Image Queue. When the sequence is started, the user application then montiors the
Acquired Image Queue with ControllerDriver.IsAcquiredImageQueueEmpty(), and the next image
is grabbed from the front of the queue with ControllerDriver.GetNextAcquiredImage(). A simple
example showing the use of the AcquireImages() interface is show in Listing 11.3.

Ajile Suite Software Users Guide
2025-02-12

106

Chapter 11. Camera Control

Figure 11.6: A screenshot of the image storage section of the Run Environment.

1 // acquire numImages images
ajileSystem.GetDriver()−>AcquireImages(numImages, cameraIndex);

3 // start the capture
ajileSystem.GetDriver()−>StartSequence(sequence.ID(), cameraIndex);

5 while (imagesRead < numImages) {
// check if any images were acquired, i .e. are available on the PC

7 if (!ajileSystem.GetDriver()−>IsAcquiredImageQueueEmpty(cameraIndex)) {
// get the next image from the acquired image queue

9 const aj :: Image& ajileImage =
ajileSystem.GetDriver()−>GetNextAcquiredImage(cameraIndex);

11 // save the image to file
if (ajileImage.Width() > 0 && ajileImage.Height() > 0)

13 ajileImage.WriteToFile(filename, 16);
// remove the acquired image from the queue so we can move the next

15 ajileSystem.GetDriver()−>PopNextAcquiredImage(cameraIndex);
imagesRead ++;

17 }
}

Listing 11.3: C++ example of acquiring images from the camera.

Note that in addition to lower latency camera capture read back, the acquire images interface is also
useful for capturing more images than there is space for in device on-board memory. To do this, we
set the number of images to acquire with AcquireImages to a number which is larger than the number
of images allocated on the device, then either re-use the same image IDs in the sequence or use repeat
counts to have more camera frames than images. Provided the communciations interface (e.g. USB3) can
keep up with the transfer speed, it is possible to continuously capture images from the camera without
missing a single frame.

Ajile Suite Software Users Guide
2025-02-12

107

Chapter 11. Camera Control

Figure 11.7: A screenshot of the image acquisition section of the Run Environment.

Example Name Description
camera sequence Creates a sequence of 10 camera images. It is possible to configure the

region of interest, bit depth and image subsampling parameter, with
command line options.

camera multi exposure Creates a sequence of 5 camera images with increasing exposure times.
camera trigger(in—out) The same as camera sequence, except that output or input triggers

are also added to the project to start or indicate the start of camera
frames.

camera dmd binary Creates a sequence of binary DMD images (Gray codes) and a corre-
sponding camera image for each DMD image. A trigger rule is added
to make the camera frame started state output trigger the DMD start
frame control input.

camera dmd grayscale Creates a sequence of grayscale DMD images (sinusoidal fringes) and a
corresponding camera image for each grayscale DMD image. A trigger
rule is added to make the camera frame started state output trigger
the DMD start sequence item.

camera dmd color Creates a sequence of 24-bit RGB color DMD images (test images from
file) and a corresponding camera image for each color DMD image. A
trigger rule is added to make the camera frame started state output
trigger the DMD start sequence item.

camera acquire Demonstrates the AcquireImages API where 100 images are acquired
from the camera and saved to file.

Table 11.2: Description of camera example projects.

11.6.1 Acquiring Images in the GUI

Images can be acquired in the GUI by setting the number of images to acquire and pressing the ’Acquire’
button in the Image Acquisition section displayed in Figure 11.7. The acquired images will be displayed
in the viewer and placed in the ’Images’ pane.

11.7 DMD and Camera Synchronization

Synchronizing an Ajile camera with external devices is done via external triggers which was already
detailed in Chapter 8. For cases where the DMD and camera components are connected to the same
system, such as with the DMD and camera controller device, it is worth noting that internal triggers are
used to synchronize the DMD and camera frames. A number of examples are provided with the software
suite which demonstrate this for binary, grayscale and color image types.

Ajile Suite Software Users Guide
2025-02-12

108

Chapter 11. Camera Control

11.7.1 DMD and Camera in the GUI

In Chapter 8, the process to add trigger rules and control trigger properties in the GUI is explained. A key
aspect in synchronizing the DMD and camera is the sequence start order. The triggered component (input
trigger component) must be started first while the triggering component (output trigger component) must
be started second. The component start order can be adjusted in the Run Environment as seen in Figure
11.3. By default, the order will be determined automatically by project trigger rules.

11.8 Example Projects

A number of example projects are provided which show how to best use the camera and to syncrhonize
it with a DMD. These examples are summarized in Table 11.2. The basic flow of the examples is for
the project to be created, loaded onto the device and started. Then while running, images will be
continuously retrieved from the device and displayed on screen to create a live camera preview from the
camera which can be used for setting up the camera positioning and focus. The user must then select
the camera image live disply window and press any key to stop the live camera preview, after which the
complete sequence of camera images will be read out from the device and saved to file.

Ajile Suite Software Users Guide
2025-02-12

109

	Introduction
	Overview of Features
	Software Installation
	Obtaining Ajile Software
	Software Installation in Windows
	Software Installation in Ubuntu

	Device Driver Installation and Configuration
	USB 3.0 Drivers
	PCIe Drivers and Configuration
	Ethernet Configuration

	Running the Examples
	Running the Examples in the GUI
	Running the Examples with the SDK

	Upgrading Ajile Software and Firmware
	Upgrading Ajile Firmware
	Upgrading Ajile Software

	Project Model Overview
	Projects
	Components
	Images
	Sequences, Sequence Items, Frames
	Lighting
	Triggers

	Projects
	Project Members
	Creating New Projects
	Creating New Projects in the GUI
	Creating New Projects in the SDK

	Saving and Opening Projects
	Saving and Opening Projects in the GUI
	Saving and Opening Projects in the SDK

	Components
	Component Members
	Initializing Components
	Reading Components Kits from File
	Retrieving Components from the Hardware
	Creating Custom Components

	Configuring Components
	Configuring Components in the GUI
	Configuring Components in the SDK

	Images
	Image Members
	Image Data Format
	Creating DMD Images
	Creating DMD Images in the GUI
	Creating DMD Images in the SDK

	Sequences
	Sequence, Sequence Item and Frame Members
	Sequence Members
	Sequence Item Members
	Frame Members

	Sequence Structure
	Creating Sequences
	Creating Sequences in the GUI
	Creating Sequences in the SDK

	Adding Sequence Items and Frames
	Adding Sequence Items and Frames in the GUI
	Adding Sequence Items and Frames in the SDK

	Modifying Sequence Item and Frame Parameters
	Modifying Sequence Item and Frame Parameters in the GUI
	Modifying Sequence Item and Frame Parameters in the SDK

	Verifying Sequences
	Verifying Sequences in the GUI
	Verifying Sequences in the SDK

	Lighting
	Lighting Introduction
	Lighting Controller Overview
	Lighting Control Software Overview

	Lighting Members
	LED Property Members
	LED Setting Members

	LED Settings Detailed Description
	Configuring Component LED Properties
	Configuring LED Properties in the GUI
	Configuring LED Properties in the SDK

	Configuring LED Settings per Frame
	Configuring LED Settings in the GUI
	Configuring LED Settings in the SDK

	Triggers
	Device State Outputs
	Device Control Inputs
	Trigger Members
	External Trigger Setting Members
	Trigger Rule Members
	Frame Trigger Setting Members

	Trigger Timing
	Trigger Rule Structure
	Configuring Trigger Settings
	Configuring Trigger Settings in the GUI
	Configuring Trigger Settings in the SDK

	Creating Trigger Rules
	Creating Trigger Rules in the GUI
	Creating Trigger Rules in the SDK

	Per Frame Trigger Settings
	Per Frame Trigger Settings in the GUI
	Per Frame Trigger Settings in the SDK

	System Control
	Connecting to the Device
	Connecting to the Device in the GUI
	Connecting to the Device in the SDK

	Loading Projects
	Loading Projects in the GUI
	Loading Projects in the SDK

	Running Sequences
	Running Sequences in the GUI
	Running Sequences in the SDK

	Device Status Information
	Device State
	Sequence Status

	Streaming Sequences
	Running Streaming Sequences in the SDK

	Color and Grayscale Display
	Displaying Color/Grayscale as a List of Bitplanes
	Splitting Multi-Bit Images into Bitplanes
	Displaying Bitplanes of n-Bit Images
	Grayscale Display: Frame Time Control Only
	Grayscale Display: Frame Time and LED Power Control
	Grayscale Display Optimization
	Color Display

	Displaying Color and Grayscale Images
	Displaying Color and Grayscale Images in the GUI
	Displaying Color and Grayscale Images in the SDK

	Creating High Bit-Depth (>8-bit) Color and Grayscale Sequence Items
	Optimizing the Output Linearity of Color and Grayscale Images
	Optimizing Color and Grayscale for Human Display

	Camera Control
	Allocating Images
	Allocating Images in the GUI

	Creating Sequences
	Creating Sequences in the GUI

	Running Camera Capture Sequences
	Running Camera Capture Sequences in the GUI

	Retrieving Images
	Retrieving Images in the GUI

	Image Storage in the GUI
	Acquiring Images
	Acquiring Images in the GUI

	DMD and Camera Synchronization
	DMD and Camera in the GUI

	Example Projects

